Displaying similar documents to “Scattering length and capacity”

Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits

Didier Robert, H. Tamura (1989)

Annales de l'institut Fourier

Similarity:

We study the semi-classical asymptotic behavior as ( h 0 ) of scattering amplitudes for Schrödinger operators - ( 1 / 2 ) h 2 Δ + V . The asymptotic formula is obtained for energies fixed in a non-trapping energy range and also is applied to study the low energy behavior of scattering amplitudes for a certain class of slowly decreasing repulsive potentials without spherical symmetry.

On non-overdetermined inverse scattering at zero energy in three dimensions

Roman G. Novikov (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We develop the ¯ -approach to inverse scattering at zero energy in dimensions d 3 of [Beals, Coifman 1985], [Henkin, Novikov 1987] and [Novikov 2002]. As a result we give, in particular, uniqueness theorem, precise reconstruction procedure, stability estimate and approximate reconstruction for the problem of finding a sufficiently small potential v in the Schrödinger equation from a fixed non-overdetermined (“backscattering” type) restriction h | Γ of the Faddeev generalized scattering amplitude...

Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations

Tanya Christiansen, M. S. Joshi (2003)

Annales de l’institut Fourier

Similarity:

The scattering matrix is defined on a perturbed stratified medium. For a class of perturbations, its main part at fixed energy is a Fourier integral operator on the sphere at infinity. Proving this is facilitated by developing a refined limiting absorption principle. The symbol of the scattering matrix determines the asymptotics of a large class of perturbations.

Geometry of KDV (1): Addition and the unimodular spectral classes.

Henry P. McKean (1986)

Revista Matemática Iberoamericana

Similarity:

This is the first of three papers on the geometry of KDV. It presents what purports to be a foliation of an extensive function space into which all known invariant manifolds of KDV fit naturally as special leaves. The two main themes are addition (each leaf has its private one) and unimodal spectral classes (each leaf has a spectral interpretation).