The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A note on the paper “The Poulsen Simplex” of Lindenstrauss, Olsen and Sternfeld”

On the representation of functions by orthogonal series in weighted L p spaces

M. Grigorian (1999)

Studia Mathematica

Similarity:

It is proved that if φ n is a complete orthonormal system of bounded functions and ɛ>0, then there exists a measurable set E ⊂ [0,1] with measure |E|>1-ɛ, a measurable function μ(x), 0 < μ(x) ≤ 1, μ(x) ≡ 1 on E, and a series of the form k = 1 c k φ k ( x ) , where c k l q for all q>2, with the following properties: 1. For any p ∈ [1,2) and f L μ p [ 0 , 1 ] = f : ʃ 0 1 | f ( x ) | p μ ( x ) d x < there are numbers ɛ k , k=1,2,…, ɛ k = 1 or 0, such that l i m n ʃ 0 1 | k = 1 n ɛ k c k φ k ( x ) - f ( x ) | p μ ( x ) d x = 0 . 2. For every p ∈ [1,2) and f L μ p [ 0 , 1 ] there are a function g L 1 [ 0 , 1 ] with g(x) = f(x) on E and numbers δ k , k=1,2,…, δ k = 1 or 0,...

The Poulsen simplex

Joram Lindenstrauss, Gunnar Olsen, Y. Sternfeld (1978)

Annales de l'institut Fourier

Similarity:

It is proved that there is a unique metrizable simplex S whose extreme points are dense. This simplex is homogeneous in the sense that for every 2 affinely homeomorphic faces F 1 and F 2 there is an automorphism of S which maps F 1 onto F 2 . Every metrizable simplex is affinely homeomorphic to a face of S . The set of extreme points of S is homeomorphic to the Hilbert space 2 . The matrices which represent A ( S ) are characterized.

An almost-sure estimate for the mean of generalized Q -multiplicative functions of modulus 1

Jean-Loup Mauclaire (2000)

Journal de théorie des nombres de Bordeaux

Similarity:

Let Q = ( Q k ) k 0 , Q 0 = 1 , Q k + 1 = q k Q k , q k 2 , be a Cantor scale, 𝐙 Q the compact projective limit group of the groups 𝐙 / Q k 𝐙 , identified to 0 j k - 1 𝐙 / q j 𝐙 , and let μ be its normalized Haar measure. To an element x = { a 0 , a 1 , a 2 , } , 0 a k q k + 1 - 1 , of 𝐙 Q we associate the sequence of integral valued random variables x k = 0 j k a j Q j . The main result of this article is that, given a complex 𝐐 -multiplicative function g of modulus 1 , we have lim x k x ( 1 x k n x k - 1 g ( n ) - 0 j k 1 q j 0 a q j g ( a Q j ) ) = 0 μ -a.e .

Algebraic independence over p

Peter Bundschuh, Kumiko Nishioka (2004)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let f ( x ) be a power series n 1 ζ ( n ) x e ( n ) , where ( e ( n ) ) is a strictly increasing linear recurrence sequence of non-negative integers, and ( ζ ( n ) ) a sequence of roots of unity in ¯ p satisfying an appropriate technical condition. Then we are mainly interested in characterizing the algebraic independence over p of the elements f ( α 1 ) , ... , f ( α t ) from p in terms of the distinct α 1 , ... , α t p satisfying 0 &lt; | α τ | p &lt; 1 for τ = 1 , ... , t . A striking application of our basic result says that, in the case e ( n ) = n , the set { f ( α ) | α p , 0 &lt; | α | p &lt; 1 } is algebraically independent over p if...

Partial differential operators depending analytically on a parameter

Frank Mantlik (1991)

Annales de l'institut Fourier

Similarity:

Let P ( λ , D ) = | α | m a α ( λ ) D α be a differential operator with constant coefficients a α depending analytically on a parameter λ . Assume that the family { P( λ ,D) } is of constant strength. We investigate the equation P ( λ , D ) 𝔣 λ g λ where 𝔤 λ is a given analytic function of λ with values in some space of distributions and the solution 𝔣 λ is required to depend analytically on λ , too. As a special case we obtain a regular fundamental solution of P( λ ,D) which depends analytically on λ . This result answers a question of L. Hörmander. ...

Mapping Properties of c 0

Paul Lewis (1999)

Colloquium Mathematicae

Similarity:

Bessaga and Pełczyński showed that if c 0 embeds in the dual X * of a Banach space X, then 1 embeds as a complemented subspace of X. Pełczyński proved that every infinite-dimensional closed linear subspace of 1 contains a copy of 1 that is complemented in 1 . Later, Kadec and Pełczyński proved that every non-reflexive closed linear subspace of L 1 [ 0 , 1 ] contains a copy of 1 that is complemented in L 1 [ 0 , 1 ] . In this note a traditional sliding hump argument is used to establish a simple mapping property of...