The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “La quasi-continuité dans l'étude du problème de Dirichlet. Effilement minimal abstrait et ensembles convexes compacts”

Ensembles singuliers associés aux espaces de Banach réticulés

Denis Feyel (1981)

Annales de l'institut Fourier

Similarity:

À tout espace de Banach fonctionnel réticulé est associée une quasi-topologie. Avec une hypothèse de dénombrabilité convenable, cette notion généralise la topologie polonaise classique. Les ensembles singuliers sont les ensembles discrets, clairsemés etc. que l’on caractérise à l’aide des mesures qu’ils portent. Le théorème de Baire admet aussi une généralisation. Application est faite au modèle probabiliste et à la théorie du potentiel.

Capacités gaussiennes

Denis Feyel, A. de La Pradelle (1991)

Annales de l'institut Fourier

Similarity:

On étudie les espaces de Sobolev W r , p ( E , μ ) construits sur un espace localement convexe E muni d’une mesure gaussienne centree μ . Si μ est de Radon, on démontre que les capacités naturelles c r , p sont tendues sur les compacts. Cela résulte d’un principe général relatif aux quasi-normes. On s’intéresse également aux fonctions quasi-continues a valeurs banachiques, ce qui est utile pour les propriétés de Nikodym, et à des applications à la continuité des trajectoires des intégrales stochastiques. ...

Le théorème du minimax et la théorie fine du potentiel

Bent Fuglede (1965)

Annales de l'institut Fourier

Similarity:

Pour tout noyau semi-continu inférieurement la capacité d’un ensemble compact est égale à une quantité duale, la contenance. Ce théorème équivaut à une extension du théorème du minimax dans la théorie des jeux. L’identité entre capacité et contenance est la clef d’une théorie de la capacitabilité des ensembles analytiques par rapport à un noyau assez général, assujetti à des conditions de régularité habituelles, mais pas nécessairement au principe du maximum. La quasi-continuité des...