Displaying similar documents to “Solutions de l’équation ¯ et zéros de la classe de Nevanlinna dans certains domaines faiblement pseudo-convexes”

Classes de Nevanlinna sur une intersection d'ouverts strictement pseudoconvexes.

Chantal Menini (1995)

Publicacions Matemàtiques

Similarity:

On a finite intersection of strictly pseudoconvex domains we define two kinds of natural Nevanlinna classes in order to take the growth of the functions near the sides or the edges into account. We give a sufficient Blaschke type condition on an analytic set for being the zero set of a function in a given Nevanlinna class. On the other hand we show that the usual Blaschke condition is not necessary here.

Formules explicites pour les solutions minimales de l’équation ¯ u = f dans la boule et dans le polydisque de n

Philippe Charpentier (1980)

Annales de l'institut Fourier

Similarity:

Dans cet article, on construit tout d’abord un noyau de Cauchy explicite dans la boule unité B de C n dont les valeurs au bord sont égales au noyau de Szegö. Puis, à partir de ce noyau, on construit explicitement les noyaux qui fournissent les solutions de l’équation u = f qui sont orthogonales aux fonctions holomorphes dans les espaces L 2 ( d σ α ) , où d σ α ( z ) = ( 1 - | z | 2 ) d λ ( z ) , d λ ( z ) étant la mesure de Lebesgue et α un réel > - 1 . Nous donnons ensuite les principales estimations dedans et au bord que vérifient ces solutions. Dans...

Approximation par des fonctions holomorphes à croissance contrôlée.

Philippe Charpentier, Yves Dupain, Modi Mounkaila (1994)

Publicacions Matemàtiques

Similarity:

Let Ω be a bounded pseudo-convex domain in C with a C boundary, and let S be the set of strictly pseudo-convex points of ∂Ω. In this paper, we study the asymptotic behaviour of holomorphic functions along normals arising from points of S. We extend results obtained by M. Ortel and W. Schneider in the unit disc and those of A. Iordan and Y. Dupain in the unit ball of C. We establish the existence of holomorphic functions of given growth having a "prescribed behaviour" in almost all normals...

Ensembles de zéros à la frontière de fonctions analytiques dans des domaines strictement pseudo-convexes

Anne-Marie Chollet (1976)

Annales de l'institut Fourier

Similarity:

Soit D , un domaine borné, strictement pseudo-convexe de C n , on note A ( D ) , la classe des fonctions analytiques dans D , continues ainsi que toutes leurs dérivées dans D . Le principal résultat de ce travail est une condition suffisante pour qu’un sous-ensemble fermé de la frontière de D soit l’ensemble des zéros d’une fonction F de A ( D ) et aussi l’ensemble des zéros communs à F et à toutes ses dérivées.