Displaying similar documents to “On the discrepancy of sequences associated with the sum-of-digits function”

Interpolation by bounded functions

W. K. Hayman (1958)

Annales de l'institut Fourier

Similarity:

Soit D un domaine plan ; y a-t-il des suites z n telles que toute suite bornée w puisse être interpolée en z n par une fonction f ( z ) régulière et bornée dans D  ? Dans l’affirmative est-il vrai que toute suite z n qui tend assez rapidement vers la frontière de D possède cette propriété ? On répond affirmativement à ces deux questions dans le cas où D est le cercle-unité.

Algebraic independence over p

Peter Bundschuh, Kumiko Nishioka (2004)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let f ( x ) be a power series n 1 ζ ( n ) x e ( n ) , where ( e ( n ) ) is a strictly increasing linear recurrence sequence of non-negative integers, and ( ζ ( n ) ) a sequence of roots of unity in ¯ p satisfying an appropriate technical condition. Then we are mainly interested in characterizing the algebraic independence over p of the elements f ( α 1 ) , ... , f ( α t ) from p in terms of the distinct α 1 , ... , α t p satisfying 0 < | α τ | p < 1 for τ = 1 , ... , t . A striking application of our basic result says that, in the case e ( n ) = n , the set { f ( α ) | α p , 0 < | α | p < 1 } is algebraically independent over p if...

Inequalities between the sum of powers and the exponential of sum of positive and commuting selfadjoint operators

Berrabah Bendoukha, Hafida Bendahmane (2011)

Archivum Mathematicum

Similarity:

Let ( ) be the set of all bounded linear operators acting in Hilbert space and + ( ) the set of all positive selfadjoint elements of ( ) . The aim of this paper is to prove that for every finite sequence ( A i ) i = 1 n of selfadjoint, commuting elements of + ( ) and every natural number p 1 , the inequality e p p p i = 1 n A i p exp i = 1 n A i , holds.

Complexity of Hartman sequences

Christian Steineder, Reinhard Winkler (2005)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let T : x x + g be an ergodic translation on the compact group C and M C a continuity set, i.e. a subset with topological boundary of Haar measure 0. An infinite binary sequence a : { 0 , 1 } defined by a ( k ) = 1 if T k ( 0 C ) M and a ( k ) = 0 otherwise, is called a Hartman sequence. This paper studies the growth rate of P a ( n ) , where P a ( n ) denotes the number of binary words of length n occurring in a . The growth rate is always subexponential and this result is optimal. If T is an ergodic translation x x + α ( α = ( α 1 , ... , α s ) ) on 𝕋 s and M is a box with...