The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the discrepancy of sequences associated with the sum-of-digits function”

Interpolation by bounded functions

W. K. Hayman (1958)

Annales de l'institut Fourier

Similarity:

Soit D un domaine plan ; y a-t-il des suites z n telles que toute suite bornée w puisse être interpolée en z n par une fonction f ( z ) régulière et bornée dans D  ? Dans l’affirmative est-il vrai que toute suite z n qui tend assez rapidement vers la frontière de D possède cette propriété ? On répond affirmativement à ces deux questions dans le cas où D est le cercle-unité.

Algebraic independence over p

Peter Bundschuh, Kumiko Nishioka (2004)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let f ( x ) be a power series n 1 ζ ( n ) x e ( n ) , where ( e ( n ) ) is a strictly increasing linear recurrence sequence of non-negative integers, and ( ζ ( n ) ) a sequence of roots of unity in ¯ p satisfying an appropriate technical condition. Then we are mainly interested in characterizing the algebraic independence over p of the elements f ( α 1 ) , ... , f ( α t ) from p in terms of the distinct α 1 , ... , α t p satisfying 0 < | α τ | p < 1 for τ = 1 , ... , t . A striking application of our basic result says that, in the case e ( n ) = n , the set { f ( α ) | α p , 0 < | α | p < 1 } is algebraically independent over p if...

Inequalities between the sum of powers and the exponential of sum of positive and commuting selfadjoint operators

Berrabah Bendoukha, Hafida Bendahmane (2011)

Archivum Mathematicum

Similarity:

Let ( ) be the set of all bounded linear operators acting in Hilbert space and + ( ) the set of all positive selfadjoint elements of ( ) . The aim of this paper is to prove that for every finite sequence ( A i ) i = 1 n of selfadjoint, commuting elements of + ( ) and every natural number p 1 , the inequality e p p p i = 1 n A i p exp i = 1 n A i , holds.

Complexity of Hartman sequences

Christian Steineder, Reinhard Winkler (2005)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let T : x x + g be an ergodic translation on the compact group C and M C a continuity set, i.e. a subset with topological boundary of Haar measure 0. An infinite binary sequence a : { 0 , 1 } defined by a ( k ) = 1 if T k ( 0 C ) M and a ( k ) = 0 otherwise, is called a Hartman sequence. This paper studies the growth rate of P a ( n ) , where P a ( n ) denotes the number of binary words of length n occurring in a . The growth rate is always subexponential and this result is optimal. If T is an ergodic translation x x + α ( α = ( α 1 , ... , α s ) ) on 𝕋 s and M is a box with...