The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Étude de l’équation 1 2 Δ u - u μ = 0 μ est une mesure positive”

Les fonctions surharmoniques associées à un opérateur elliptique du second ordre à coefficients discontinus

Rose-Marie Hervé, Michel Hervé (1969)

Annales de l'institut Fourier

Similarity:

On étend aux solutions et sursolutions locales d’une équation elliptique de la forme - i u x i + j a i j u x i + d j u + i b i u x i + c u = 0 les propriétés démontrées dans le cas d i = b i = c = 0  : les solutions locales forment un système de fonctions harmoniques satisfaisant à l’axiomatique de M. Brelot, les fonctions surharmoniques coïncidant p.p. avec les sursolutions locales ; un principe du maximum pour les fonctions sous-harmoniques majorées par une fonction ϵ W 0 1 , 2  ; la stabilité par balayage sur un ensemble quelconque des fonctions...

Topologies fines et compactifications associées à certains espaces de Dirichlet

Denis Feyel, A. de La Pradelle (1977)

Annales de l'institut Fourier

Similarity:

Nous commençons par définir la notion d’espaces L 1 ( γ ) γ est une capacité, ce qui permet d’introduire la notion de mesure d’énergie finie par rapport à γ , et de parler d’espaces de Dirichlet basés sur γ . Soit d’autre part un espace de Dirichlet en ce sens avec potentiels s.c.i. : on étudie les espaces de Dirichlet sur les ouverts fins correspondants à l’aide d’une compactification. On retrouve plus facilement et on généralise les résultats de D. Feyel et A. de La Pradelle,...

Les fonctions surharmoniques dans l'axiomatique de M. Brelot associées à un opérateur elliptique dégénéré

Michel Hervé, Rose-Marie Hervé (1972)

Annales de l'institut Fourier

Similarity:

Soit l’opérateur elliptique dégénéré L , du type considéré par J.-M. Bony dans ses travaux récents (par ex. Conférences du C.I.M.E., Stresa, juillet 1969), tel que le faisceau associé de fonctions harmoniques vérifie les axiomes de Brelot : on montre que les fonctions surharmoniques associées u sont localement intégrables et caractérisées par L u 0 , et que les potentiels à support ponctuel donné sont proportionnels.