The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A note on the one-dimensional systems of formal equations”

On the Difference of 4-Gonal Linear Systems on some Curves

Ohbuchi, Akira (1997)

Serdica Mathematical Journal

Similarity:

Let C = (C, g^1/4 ) be a tetragonal curve. We consider the scrollar invariants e1 , e2 , e3 of g^1/4 . We prove that if W^1/4 (C) is a non-singular variety, then every g^1/4 ∈ W^1/4 (C) has the same scrollar invariants.

On complete solutions and complete singular solutions of second order ordinary differential equations

Masatomo Takahashi (2007)

Colloquium Mathematicae

Similarity:

A complete solution of an implicit second order ordinary differential equation is defined by an immersive two-parameter family of geometric solutions on the equation hypersurface. We show that a completely integrable equation is either of Clairaut type or of first order type. Moreover, we define a complete singular solution, an immersive one-parameter family of singular solutions on the contact singular set. We give conditions for existence of a complete solution and a complete singular...

Number of singular points of an annulus in 2

Maciej Borodzik, Henryk Zołądek (2011)

Annales de l’institut Fourier

Similarity:

Using BMY inequality and a Milnor number bound we prove that any algebraic annulus * in 2 with no self-intersections can have at most three cuspidal singularities.