The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Espaces de Sobolev gaussiens”

Capacités gaussiennes

Denis Feyel, A. de La Pradelle (1991)

Annales de l'institut Fourier

Similarity:

On étudie les espaces de Sobolev W r , p ( E , μ ) construits sur un espace localement convexe E muni d’une mesure gaussienne centree μ . Si μ est de Radon, on démontre que les capacités naturelles c r , p sont tendues sur les compacts. Cela résulte d’un principe général relatif aux quasi-normes. On s’intéresse également aux fonctions quasi-continues a valeurs banachiques, ce qui est utile pour les propriétés de Nikodym, et à des applications à la continuité des trajectoires des intégrales stochastiques. ...

Représentation intégrale de certaines mesures quasi-invariantes sur 𝒞 ( 𝐑 ) ; mesures extrémales et propriété de Markov

Gilles Royer, Marc Yor (1976)

Annales de l'institut Fourier

Similarity:

On établit pour le cône C des mesures μ positives bornées sur 𝒞 ( R ) , quasi-invariantes sous les translations de 𝒟 ( R ) et vérifiant : μ ( f + d w ) = μ ( d w ) exp R d t [ ( w ( t ) + 1 2 f ( t ) ) f ' ' ( t ) - P ( w ( t ) + f ( t ) + P ( w ( t ) ) ] (avec P polynôme borné inférieurement) les résultats suivants : – Toute mesure de C est intégrale de mesures appartenant aux génératrices extrémales de  C . – Les génératrices extrémales de C sont composées de mesures markoviennes.

Les espaces du type de Beppo Levi

Jacques Deny, Jacques-Louis Lions (1954)

Annales de l'institut Fourier

Similarity:

Soit Ω un ouvert quelconque connexe de R n . Soit E un espace vectoriel de distributions sur Ω , séparé et complet. On désigne par B L m ( E ) l’espace des distributions sur Ω dont toutes les dérivées d’ordre m sont dans E . Ces espaces sont les espaces du type de Beppo Levi. Si E = L 2 ( Ω ) , on écrit B L = B L ( Ω ) au lieu de B L 1 ( L 2 ( Ω ) ) . La première partie est consacrée aux propriétés générales des espaces B L 1 ( E )  ; la seconde associe à toute fonction F B L ( Ω ) une fonction “précisée”, définie partout sauf sur un ensemble de capacité extérieure...

Ensembles singuliers associés aux espaces de Banach réticulés

Denis Feyel (1981)

Annales de l'institut Fourier

Similarity:

À tout espace de Banach fonctionnel réticulé est associée une quasi-topologie. Avec une hypothèse de dénombrabilité convenable, cette notion généralise la topologie polonaise classique. Les ensembles singuliers sont les ensembles discrets, clairsemés etc. que l’on caractérise à l’aide des mesures qu’ils portent. Le théorème de Baire admet aussi une généralisation. Application est faite au modèle probabiliste et à la théorie du potentiel.

Sur les espaces de Stein quasi-compacts en géométrie rigide

Qing Liu (1989)

Journal de théorie des nombres de Bordeaux

Similarity:

On étudie les espaces de Stein quasi-compacts X (i.e. vérifiant H q ( X , ) = 0 pour tout q 1 et tout faisceau cohérent sur X ). On établit un critère simple pour qu’un espace soit de Stein et on en déduit quelques conséquences.