The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Globality in semisimple Lie groups”

Invariant orders in Lie groups

Neeb, Karl-Hermann

Similarity:

[For the entire collection see Zbl 0742.00067.]The author formulates several theorems about invariant orders in Lie groups (without proofs). The main theorem: a simply connected Lie group G admits a continuous invariant order if and only if its Lie algebra L ( G ) contains a pointed invariant cone. V. M. Gichev has proved this theorem for solvable simply connected Lie groups (1989). If G is solvable and simply connected then all pointed invariant cones W in L ( G ) are global in G (a Lie wedge W L ( G ) ...

On the definition of the dual Lie coalgebra of a Lie algebra.

Bertin Diarra (1995)

Publicacions Matemàtiques

Similarity:

Let L be a Lie algebra over a field K. The dual Lie coalgebra Lº of L has been defined by W. Michaelis to be the sum of all good subspaces V of the dual space L* of L: V is good if m(V) ⊂ V ⊗ V, where m is the multiplication of L. We show that Lº = m(L* ⊗ L*) as in the associative case.