Displaying similar documents to “On algebraic sets invariant by one-dimensional foliations on 𝐂 P ( 3 )

On vector fields in C without a separatrix.

J. Olivares-Vázquez (1992)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

A family of germs at 0 of holomorphic vector fields in C without separatrices is constructed, with the aid of the blown-up foliation F in the blown-up manifold C. We impose conditions on the multiplicity and the linear part of F at its singular points (i.e., non-semisimplicity and certain nonresonancy), which are sufficient for the original vector field to be separatrix-free.

Holomorphic foliations by curves on 3 with non-isolated singularities

Gilcione Nonato Costa (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Let be a holomorphic foliation by curves on 3 . We treat the case where the set Sing ( ) consists of disjoint regular curves and some isolated points outside of them. In this situation, using Baum-Bott’s formula and Porteuos’theorem, we determine the number of isolated singularities, counted with multiplicities, in terms of the degree of , the multiplicity of along the curves and the degree and genus of the curves.

Unfoldings of foliations with multiform first integrals

Tatsuo Suwa (1983)

Annales de l'institut Fourier

Similarity:

Let F = ( ω ) be a codim 1 local foliation generated by a germ ω of the form ω = f 1 ... f p i = 1 p λ i d f i f i for some complex numbers λ i and germs f i of holomorphic functions at the origin in C n . We determine, under some conditions, the set of equivalence classes of first order unfoldings and construct explicitly a universal unfolding of F . Special cases of this include foliations with holomorphic or meromorphic first integrals. We also show that the unfolding theory for F is equivalent to the unfolding theory for the multiform...

The polar curve of a foliation on 2

Rogério S. Mol (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We study some properties of the polar curve P l associated to a singular holomorphic foliation on the complex projective plane 2 . We prove that, for a generic center l 2 , the curve P l is irreducible and its singular points are exactly the singular points of with vanishing linear part. We also obtain upper bounds for the algebraic multiplicities of the singularities of and for its number of radial singularities.