The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On dense ideals in spaces of analytic functions”

Finitely generated ideals in A ( ω )

John Erik Fornaess, M. Ovrelid (1983)

Annales de l'institut Fourier

Similarity:

The Gleason problem is solved on real analytic pseudoconvex domains in C 2 . In this case the weakly pseudoconvex points can be a two-dimensional subset of the boundary. To reduce the Gleason problem to a question it is shown that the set of Kohn-Nirenberg points is at most one-dimensional. In fact, except for a one-dimensional subset, the weakly pseudoconvex boundary points are R -points as studied by Range and therefore allow local sup-norm estimates for .

Trivial generators for nontrivial fibres

Linus Carlsson (2008)

Mathematica Bohemica

Similarity:

Pseudoconvex domains are exhausted in such a way that we keep a part of the boundary fixed in all the domains of the exhaustion. This is used to solve a problem concerning whether the generators for the ideal of either the holomorphic functions continuous up to the boundary or the bounded holomorphic functions, vanishing at a point in n where the fibre is nontrivial, has to exceed n . This is shown not to be the case.