Plurisubharmonic functions with logarithmic singularities

E. Bedford; B. A. Taylor

Annales de l'institut Fourier (1988)

  • Volume: 38, Issue: 4, page 133-171
  • ISSN: 0373-0956

Abstract

top
To a plurisubharmonic function u on C n with logarithmic growth at infinity, we may associate the Robin function ρ u ( z ) = lim sup λ u ( λ z ) - log ( λ z ) defined on P n - 1 , the hyperplane at infinity. We study the classes L + , and (respectively) L p of plurisubharmonic functions which have the form u = log ( 1 + | z | ) + O ( 1 ) and (respectively) for which the function ρ u is not identically - . We obtain an integral formula which connects the Monge-Ampère measure on the space C n with the Robin function on P n - 1 . As an application we obtain a criterion on the convergence of the Monge-Ampère measures of a sequence of functions in L + which is equivalent to the convergence of the associated Robin functions. As a consequence, it is shown that a polar set E is contained in { Ψ = - } for some Ψ L ρ , and so the polar propagator E * , given as the intersection of the sets { Ψ = - } containing E , is polar. Ir A is an algebraic hypersurface which is disjoint from E , then E * cannot contain A .

How to cite

top

Bedford, E., and Taylor, B. A.. "Plurisubharmonic functions with logarithmic singularities." Annales de l'institut Fourier 38.4 (1988): 133-171. <http://eudml.org/doc/74812>.

@article{Bedford1988,
abstract = {To a plurisubharmonic function $u$ on $\{\bf C\}^ n$ with logarithmic growth at infinity, we may associate the Robin function\begin\{\}\rho \_u(z) = \displaystyle \limsup \_\{\lambda \rightarrow \infty \} u(\lambda z) - \log (\lambda z)\end\{\}defined on $\{\bf P\}^\{n-1\}$, the hyperplane at infinity. We study the classes $L_+$, and (respectively) $L_p$ of plurisubharmonic functions which have the form $u=\log (1+|z|)+O(1)$ and (respectively) for which the function $\rho _u$ is not identically $-\infty $. We obtain an integral formula which connects the Monge-Ampère measure on the space $\{\bf C\}^n$ with the Robin function on $\{\bf P\}^\{n-1\}$. As an application we obtain a criterion on the convergence of the Monge-Ampère measures of a sequence of functions in $L_+$ which is equivalent to the convergence of the associated Robin functions. As a consequence, it is shown that a polar set $E$ is contained in $\lbrace \Psi = -\infty \rbrace $ for some $\Psi \in L_\rho $, and so the polar propagator $E^*$, given as the intersection of the sets $\lbrace \Psi = -\infty \rbrace $ containing $E$, is polar. Ir $A$ is an algebraic hypersurface which is disjoint from $E$, then $E^*$ cannot contain $A$.},
author = {Bedford, E., Taylor, B. A.},
journal = {Annales de l'institut Fourier},
keywords = {complex Monge-Ampère operator; Green function; plurisubharmonic functions with logarithmic singularities; pluripolar set},
language = {eng},
number = {4},
pages = {133-171},
publisher = {Association des Annales de l'Institut Fourier},
title = {Plurisubharmonic functions with logarithmic singularities},
url = {http://eudml.org/doc/74812},
volume = {38},
year = {1988},
}

TY - JOUR
AU - Bedford, E.
AU - Taylor, B. A.
TI - Plurisubharmonic functions with logarithmic singularities
JO - Annales de l'institut Fourier
PY - 1988
PB - Association des Annales de l'Institut Fourier
VL - 38
IS - 4
SP - 133
EP - 171
AB - To a plurisubharmonic function $u$ on ${\bf C}^ n$ with logarithmic growth at infinity, we may associate the Robin function\begin{}\rho _u(z) = \displaystyle \limsup _{\lambda \rightarrow \infty } u(\lambda z) - \log (\lambda z)\end{}defined on ${\bf P}^{n-1}$, the hyperplane at infinity. We study the classes $L_+$, and (respectively) $L_p$ of plurisubharmonic functions which have the form $u=\log (1+|z|)+O(1)$ and (respectively) for which the function $\rho _u$ is not identically $-\infty $. We obtain an integral formula which connects the Monge-Ampère measure on the space ${\bf C}^n$ with the Robin function on ${\bf P}^{n-1}$. As an application we obtain a criterion on the convergence of the Monge-Ampère measures of a sequence of functions in $L_+$ which is equivalent to the convergence of the associated Robin functions. As a consequence, it is shown that a polar set $E$ is contained in $\lbrace \Psi = -\infty \rbrace $ for some $\Psi \in L_\rho $, and so the polar propagator $E^*$, given as the intersection of the sets $\lbrace \Psi = -\infty \rbrace $ containing $E$, is polar. Ir $A$ is an algebraic hypersurface which is disjoint from $E$, then $E^*$ cannot contain $A$.
LA - eng
KW - complex Monge-Ampère operator; Green function; plurisubharmonic functions with logarithmic singularities; pluripolar set
UR - http://eudml.org/doc/74812
ER -

References

top
  1. [AT] H. ALEXANDER and B. A. TAYLOR, Comparison of two capacities in ℂn, Math. Z., 186 (1984), 407-417. Zbl0576.32029MR85k:32034
  2. [BT 1] E. BEDFORD and B. A. TAYLOR, A new capacity for plurisubharmonic functions, Acta Math., 149 (1982), 1-40. Zbl0547.32012MR84d:32024
  3. [BT 2] E. BEDFORD and B. A. TAYLOR, Fine topology, Silov boundary, and (ddc)n, J. Funct. Anal., 72 (1987), 225-251. Zbl0677.31005MR88g:32033
  4. [Car] L. CARLESON, Selected Problems in Exceptional Sets, Van Nostrand Math. Studies # 13, D. Van Nostrand (1968). Zbl0189.10903
  5. [Ceg] U. CEGRELL, An estimate of the complex Monge-Ampere operator. Analytic functions. Proceedings, Blazejwko 1982. Lecture Notes in Math., 1039, pp. 84-87. Berlin, Heidelberg, New York, Springer, 1983. Zbl0529.35018
  6. [D 1] J.-P. DEMAILLY, Mesure de Monge-Ampère et caractérisation des variétés algébriques affines, mémoire (nouvelle série) n° 19, Soc. Math. de France, 1985. Zbl0579.32012MR87g:32030
  7. [D 2] J.-P. DEMAILLY, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z:, 194 (1987), 519-564. Zbl0595.32006MR88g:32034
  8. [F] H. FEDERER, Geometric Measure Theory, Springer-Verlag, New York, 1969. Zbl0176.00801MR41 #1976
  9. [J] B. JOSEFSON, On the equivalence between locally polar and globally polar sets for plurisubharmonic functions on ℂn, Ark. Math., 16 (1978), 109-115. Zbl0383.31003MR58 #28669
  10. [Km] M. KLIMEK, Extremal plurisubharmonic functions and invariant pseudo-distances, Bull. Soc. Math. France, 113 (1985), 123-142. Zbl0584.32037MR87d:32032
  11. [K 1] S. KOLODZIEJ, Logarithmic capacity in ℂn, to appear in Ann. Pol. Math. Zbl0664.32014
  12. [K 2] S. KOLODZIEJ, On capacities associated to the Siciak extremal function (preprint). Zbl0681.32013
  13. [Lp 1] L. LEMPERT, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France, 109 (1981), 427-474. Zbl0492.32025MR84d:32036
  14. [Lp 2] L. LEMPERT, Solving the degenerate Monge-Ampere equation with one concentrated singularity, Math. Ann., 263 (1983), 515-532. Zbl0531.35020MR84k:32024
  15. [L] N. LEVENBERG, Capacities in several complex variables, Dissertation, The University of Michigan, 1984. 
  16. [Sa] A. SADULLAEV, Plurisubharmonic measures and capacities on complex manifolds, Russian Math. Surveys, 36 (1981), 61-119. Zbl0494.31005MR83c:32026
  17. [Si 1] J. SICIAK, Extremal plurisubharmonic functions in ℂn, Ann. Polon. Math., 39 (1981). Zbl0477.32018MR83e:32018
  18. [Si 2] J. SICIAK, Extremal plurisubharmonic functions and capacities in ℂn, Sophia University, Tokyo, 1982. Zbl0579.32025
  19. [Si 3] J. SICIAK, On logarithmic capacities and pluripolar sets in ℂn (preprint). 
  20. [So] S. SOUHAIL, Relations entre différentes notions d'ensembles pluripolaires complets dans ℂn, Thèse, L'Université Paul Sabatier de Toulouse, 1987. 
  21. [T] B. A. TAYLOR, An estimate for an extremal plurisubharmonic function on ℂn, Séminaire P. Lelong, P. Dolbeault, H. Skoda, 1982-1983, Lectures Notes in Math., 1028 (1983), 318-328. Zbl0522.32014MR86g:32025
  22. [Z] V. P. ZAHARJUTA, Transfinite diameter Čebyšev constants, and capacity for compacta in ℂn, Math. USSR Sbornik, 25 (1975), 350-364. Zbl0333.32004
  23. [Ze] A. ZERIAHI, Ensembles pluripolaires exceptionnels pour croissance partielle des fonctions holomorphes, preprint. Zbl0688.32004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.