Plurisubharmonic functions with logarithmic singularities

E. Bedford; B. A. Taylor

Annales de l'institut Fourier (1988)

  • Volume: 38, Issue: 4, page 133-171
  • ISSN: 0373-0956

Abstract

top
To a plurisubharmonic function u on C n with logarithmic growth at infinity, we may associate the Robin function ρ u ( z ) = lim sup λ u ( λ z ) - log ( λ z ) defined on P n - 1 , the hyperplane at infinity. We study the classes L + , and (respectively) L p of plurisubharmonic functions which have the form u = log ( 1 + | z | ) + O ( 1 ) and (respectively) for which the function ρ u is not identically - . We obtain an integral formula which connects the Monge-Ampère measure on the space C n with the Robin function on P n - 1 . As an application we obtain a criterion on the convergence of the Monge-Ampère measures of a sequence of functions in L + which is equivalent to the convergence of the associated Robin functions. As a consequence, it is shown that a polar set E is contained in { Ψ = - } for some Ψ L ρ , and so the polar propagator E * , given as the intersection of the sets { Ψ = - } containing E , is polar. Ir A is an algebraic hypersurface which is disjoint from E , then E * cannot contain A .

How to cite

top

Bedford, E., and Taylor, B. A.. "Plurisubharmonic functions with logarithmic singularities." Annales de l'institut Fourier 38.4 (1988): 133-171. <http://eudml.org/doc/74812>.

@article{Bedford1988,
abstract = {To a plurisubharmonic function $u$ on $\{\bf C\}^ n$ with logarithmic growth at infinity, we may associate the Robin function\begin\{\}\rho \_u(z) = \displaystyle \limsup \_\{\lambda \rightarrow \infty \} u(\lambda z) - \log (\lambda z)\end\{\}defined on $\{\bf P\}^\{n-1\}$, the hyperplane at infinity. We study the classes $L_+$, and (respectively) $L_p$ of plurisubharmonic functions which have the form $u=\log (1+|z|)+O(1)$ and (respectively) for which the function $\rho _u$ is not identically $-\infty $. We obtain an integral formula which connects the Monge-Ampère measure on the space $\{\bf C\}^n$ with the Robin function on $\{\bf P\}^\{n-1\}$. As an application we obtain a criterion on the convergence of the Monge-Ampère measures of a sequence of functions in $L_+$ which is equivalent to the convergence of the associated Robin functions. As a consequence, it is shown that a polar set $E$ is contained in $\lbrace \Psi = -\infty \rbrace $ for some $\Psi \in L_\rho $, and so the polar propagator $E^*$, given as the intersection of the sets $\lbrace \Psi = -\infty \rbrace $ containing $E$, is polar. Ir $A$ is an algebraic hypersurface which is disjoint from $E$, then $E^*$ cannot contain $A$.},
author = {Bedford, E., Taylor, B. A.},
journal = {Annales de l'institut Fourier},
keywords = {complex Monge-Ampère operator; Green function; plurisubharmonic functions with logarithmic singularities; pluripolar set},
language = {eng},
number = {4},
pages = {133-171},
publisher = {Association des Annales de l'Institut Fourier},
title = {Plurisubharmonic functions with logarithmic singularities},
url = {http://eudml.org/doc/74812},
volume = {38},
year = {1988},
}

TY - JOUR
AU - Bedford, E.
AU - Taylor, B. A.
TI - Plurisubharmonic functions with logarithmic singularities
JO - Annales de l'institut Fourier
PY - 1988
PB - Association des Annales de l'Institut Fourier
VL - 38
IS - 4
SP - 133
EP - 171
AB - To a plurisubharmonic function $u$ on ${\bf C}^ n$ with logarithmic growth at infinity, we may associate the Robin function\begin{}\rho _u(z) = \displaystyle \limsup _{\lambda \rightarrow \infty } u(\lambda z) - \log (\lambda z)\end{}defined on ${\bf P}^{n-1}$, the hyperplane at infinity. We study the classes $L_+$, and (respectively) $L_p$ of plurisubharmonic functions which have the form $u=\log (1+|z|)+O(1)$ and (respectively) for which the function $\rho _u$ is not identically $-\infty $. We obtain an integral formula which connects the Monge-Ampère measure on the space ${\bf C}^n$ with the Robin function on ${\bf P}^{n-1}$. As an application we obtain a criterion on the convergence of the Monge-Ampère measures of a sequence of functions in $L_+$ which is equivalent to the convergence of the associated Robin functions. As a consequence, it is shown that a polar set $E$ is contained in $\lbrace \Psi = -\infty \rbrace $ for some $\Psi \in L_\rho $, and so the polar propagator $E^*$, given as the intersection of the sets $\lbrace \Psi = -\infty \rbrace $ containing $E$, is polar. Ir $A$ is an algebraic hypersurface which is disjoint from $E$, then $E^*$ cannot contain $A$.
LA - eng
KW - complex Monge-Ampère operator; Green function; plurisubharmonic functions with logarithmic singularities; pluripolar set
UR - http://eudml.org/doc/74812
ER -

References

top
  1. [AT] H. ALEXANDER and B. A. TAYLOR, Comparison of two capacities in ℂn, Math. Z., 186 (1984), 407-417. Zbl0576.32029MR85k:32034
  2. [BT 1] E. BEDFORD and B. A. TAYLOR, A new capacity for plurisubharmonic functions, Acta Math., 149 (1982), 1-40. Zbl0547.32012MR84d:32024
  3. [BT 2] E. BEDFORD and B. A. TAYLOR, Fine topology, Silov boundary, and (ddc)n, J. Funct. Anal., 72 (1987), 225-251. Zbl0677.31005MR88g:32033
  4. [Car] L. CARLESON, Selected Problems in Exceptional Sets, Van Nostrand Math. Studies # 13, D. Van Nostrand (1968). Zbl0189.10903
  5. [Ceg] U. CEGRELL, An estimate of the complex Monge-Ampere operator. Analytic functions. Proceedings, Blazejwko 1982. Lecture Notes in Math., 1039, pp. 84-87. Berlin, Heidelberg, New York, Springer, 1983. Zbl0529.35018
  6. [D 1] J.-P. DEMAILLY, Mesure de Monge-Ampère et caractérisation des variétés algébriques affines, mémoire (nouvelle série) n° 19, Soc. Math. de France, 1985. Zbl0579.32012MR87g:32030
  7. [D 2] J.-P. DEMAILLY, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z:, 194 (1987), 519-564. Zbl0595.32006MR88g:32034
  8. [F] H. FEDERER, Geometric Measure Theory, Springer-Verlag, New York, 1969. Zbl0176.00801MR41 #1976
  9. [J] B. JOSEFSON, On the equivalence between locally polar and globally polar sets for plurisubharmonic functions on ℂn, Ark. Math., 16 (1978), 109-115. Zbl0383.31003MR58 #28669
  10. [Km] M. KLIMEK, Extremal plurisubharmonic functions and invariant pseudo-distances, Bull. Soc. Math. France, 113 (1985), 123-142. Zbl0584.32037MR87d:32032
  11. [K 1] S. KOLODZIEJ, Logarithmic capacity in ℂn, to appear in Ann. Pol. Math. Zbl0664.32014
  12. [K 2] S. KOLODZIEJ, On capacities associated to the Siciak extremal function (preprint). Zbl0681.32013
  13. [Lp 1] L. LEMPERT, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France, 109 (1981), 427-474. Zbl0492.32025MR84d:32036
  14. [Lp 2] L. LEMPERT, Solving the degenerate Monge-Ampere equation with one concentrated singularity, Math. Ann., 263 (1983), 515-532. Zbl0531.35020MR84k:32024
  15. [L] N. LEVENBERG, Capacities in several complex variables, Dissertation, The University of Michigan, 1984. 
  16. [Sa] A. SADULLAEV, Plurisubharmonic measures and capacities on complex manifolds, Russian Math. Surveys, 36 (1981), 61-119. Zbl0494.31005MR83c:32026
  17. [Si 1] J. SICIAK, Extremal plurisubharmonic functions in ℂn, Ann. Polon. Math., 39 (1981). Zbl0477.32018MR83e:32018
  18. [Si 2] J. SICIAK, Extremal plurisubharmonic functions and capacities in ℂn, Sophia University, Tokyo, 1982. Zbl0579.32025
  19. [Si 3] J. SICIAK, On logarithmic capacities and pluripolar sets in ℂn (preprint). 
  20. [So] S. SOUHAIL, Relations entre différentes notions d'ensembles pluripolaires complets dans ℂn, Thèse, L'Université Paul Sabatier de Toulouse, 1987. 
  21. [T] B. A. TAYLOR, An estimate for an extremal plurisubharmonic function on ℂn, Séminaire P. Lelong, P. Dolbeault, H. Skoda, 1982-1983, Lectures Notes in Math., 1028 (1983), 318-328. Zbl0522.32014MR86g:32025
  22. [Z] V. P. ZAHARJUTA, Transfinite diameter Čebyšev constants, and capacity for compacta in ℂn, Math. USSR Sbornik, 25 (1975), 350-364. Zbl0333.32004
  23. [Ze] A. ZERIAHI, Ensembles pluripolaires exceptionnels pour croissance partielle des fonctions holomorphes, preprint. Zbl0688.32004

NotesEmbed ?

top

You must be logged in to post comments.