The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Global existence theorems for hyperbolic harmonic maps”

Harmonic morphisms between riemannian manifolds

Bent Fuglede (1978)

Annales de l'institut Fourier

Similarity:

A harmonic morphism f : M N between Riemannian manifolds M and N is by definition a continuous mappings which pulls back harmonic functions. It is assumed that dim M dim N , since otherwise every harmonic morphism is constant. It is shown that a harmonic morphism is the same as a harmonic mapping in the sense of Eells and Sampson with the further property of being semiconformal, that is, a conformal submersion of the points where d f vanishes. Every non-constant harmonic morphism is shown to be...

On harmonic vector fields.

Jerzy J. Konderak (1992)

Publicacions Matemàtiques

Similarity:

A tangent bundle to a Riemannian manifold carries various metrics induced by a Riemannian tensor. We consider harmonic vector fields with respect to some of these metrics. We give a simple proof that a vector field on a compact manifold is harmonic with respect to the Sasaki metric on TM if and only if it is parallel. We also consider the metrics and on a tangent bundle (cf. [YI]) and harmonic vector fields generated by them.