Maps into and applications
Zvengrowski, Peter
Similarity:
Zvengrowski, Peter
Similarity:
Grzegorz Gromadzki (2000)
Revista Matemática Iberoamericana
Similarity:
We prove that k (k ≥ 9) non-conjugate symmetries of a Riemann surface of genus g have at most 2g - 2 + 2(9 - k) ovals in total, where r is the smallest positive integer for which k ≤ 2. Furthermore we prove that for arbitrary k ≥ 9 this bound is sharp for infinitely many values of g.
Costa, Antonio F., Izquierdo, Milagros (2002)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
J. Souto (2010)
Annales de la faculté des sciences de Toulouse Mathématiques
Similarity:
We prove that the standard action of the mapping class group of a surface of sufficiently large genus on the unit tangent bundle is not homotopic to any smooth action.
Arés Gastesi, Pablo (1999)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity: