Martingales on noncompact manifolds : maximal inequalities and prescribed limits
R.W.R. Darling (1996)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
R.W.R. Darling (1996)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
R. W. R. Darling (1982)
Séminaire de probabilités de Strasbourg
Similarity:
Jean Picard (2005)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Carl Graham (1988)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Francis Hirsch, Bernard Roynette (2012)
ESAIM: Probability and Statistics
Similarity:
In this paper, we present a new proof of the celebrated theorem of Kellerer, stating that every integrable process, which increases in the convex order, has the same one-dimensional marginals as a martingale. Our proof proceeds by approximations, and calls upon martingales constructed as solutions of stochastic differential equations. It relies on a uniqueness result, due to Pierre, for a Fokker-Planck equation.