Displaying similar documents to “Uniqueness and non-existence of metrics with prescribed Ricci curvature”

On Gauss-Bonnet curvatures.

Labbi, Mohammed-Larbi (2007)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Similarity:

Characterization of Low Dimensional RCD*(K, N) Spaces

Yu Kitabeppu, Sajjad Lakzian (2016)

Analysis and Geometry in Metric Spaces

Similarity:

In this paper,we give the characterization of metric measure spaces that satisfy synthetic lower Riemannian Ricci curvature bounds (so called RCD*(K, N) spaces) with non-empty one dimensional regular sets. In particular, we prove that the class of Ricci limit spaces with Ric ≥ K and Hausdorff dimension N and the class of RCD*(K, N) spaces coincide for N < 2 (They can be either complete intervals or circles). We will also prove a Bishop-Gromov type inequality (that is ,roughly speaking,...

Unit tangent sphere bundles with constant scalar curvature

Eric Boeckx, Lieven Vanhecke (2001)

Czechoslovak Mathematical Journal

Similarity:

As a first step in the search for curvature homogeneous unit tangent sphere bundles we derive necessary and sufficient conditions for a manifold to have a unit tangent sphere bundle with constant scalar curvature. We give complete classifications for low dimensions and for conformally flat manifolds. Further, we determine when the unit tangent sphere bundle is Einstein or Ricci-parallel.

On some type of curvature conditions

Mohamed Belkhelfa, Ryszard Deszcz, Małgorzata Głogowska, Marian Hotloś, Dorota Kowalczyk, Leopold Verstraelen (2002)

Banach Center Publications

Similarity:

In this paper we present a review of recent results on semi-Riemannian manifolds satisfying curvature conditions of pseudosymmetry type.