Minimal solutions of variational problems on a torus
Jürgen Moser (1986)
Annales de l'I.H.P. Analyse non linéaire
Similarity:
Jürgen Moser (1986)
Annales de l'I.H.P. Analyse non linéaire
Similarity:
L. Simon (1987)
Annales de l'I.H.P. Analyse non linéaire
Similarity:
Ferry Kwakkel (2011)
Fundamenta Mathematicae
Similarity:
As was known to H. Poincaré, an orientation preserving circle homeomorphism without periodic points is either minimal or has no dense orbits, and every orbit accumulates on the unique minimal set. In the first case the minimal set is the circle, in the latter case a Cantor set. In this paper we study a two-dimensional analogue of this classical result: we classify the minimal sets of non-resonant torus homeomorphisms, that is, torus homeomorphisms isotopic to the identity for which the...
Zaslavski, Alexander J. (2002)
Abstract and Applied Analysis
Similarity:
Dusa McDuff (1981)
Annales de l'institut Fourier
Similarity:
Necessary conditions are found for a Cantor subset of the circle to be minimal for some -diffeomorphism. These conditions are not satisfied by the usual ternary Cantor set.
Walter H. Gottschalk (1964)
Annales de l'institut Fourier
Similarity:
Ernst Kuwert (1993)
Annales de l'I.H.P. Analyse non linéaire
Similarity: