The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Mather measures and the Bowen–Series transformation”

Generic measures for geodesic flows on nonpositively curved manifolds

Yves Coudène, Barbara Schapira (2014)

Journal de l’École polytechnique — Mathématiques

Similarity:

We study the generic invariant probability measures for the geodesic flow on connected complete nonpositively curved manifolds. Under a mild technical assumption, we prove that ergodicity is a generic property in the set of probability measures defined on the unit tangent bundle of the manifold and supported by trajectories not bounding a flat strip. This is done by showing that Dirac measures on periodic orbits are dense in that set. In the case of a compact surface, we...

The return sequence of the Bowen-Series map for punctured surfaces

Manuel Stadlbauer (2004)

Fundamenta Mathematicae

Similarity:

For a non-compact hyperbolic surface M of finite area, we study a certain Poincaré section for the geodesic flow. The canonical, non-invertible factor of the first return map to this section is shown to be pointwise dual ergodic with return sequence (aₙ) given by aₙ = π/(4(Area(M) + 2π)) · n/(log n). We use this result to deduce that the section map itself is rationally ergodic, and that the geodesic flow associated to M is ergodic with respect to the...