The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Correction to “Cohomology of line bundles on G / B ””

A criterion for virtual global generation

Indranil Biswas, A. J. Parameswaran (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Let X be a smooth projective curve defined over an algebraically closed field k , and let F X denote the absolute Frobenius morphism of X when the characteristic of k is positive. A vector bundle over X is called virtually globally generated if its pull back, by some finite morphism to X from some smooth projective curve, is generated by its global sections. We prove the following. If the characteristic of k is positive, a vector bundle E over X is virtually globally generated if and only...

About G -bundles over elliptic curves

Yves Laszlo (1998)

Annales de l'institut Fourier

Similarity:

Let G be a complex algebraic group, simple and simply connected, T a maximal torus and W the Weyl group. One shows that the coarse moduli space M G ( X ) parametrizing S -equivalence classes of semistable G -bundles over an elliptic curve X is isomorphic to [ Γ ( T ) Z X ] / W . By a result of Looijenga, this shows that M G ( X ) is a weighted projective space.

Poincaré bundles for projective surfaces

Nicole Mestrano (1985)

Annales de l'institut Fourier

Similarity:

Let X be a smooth projective surface, K the canonical divisor, H a very ample divisor and M H ( c 1 , c 2 ) the moduli space of rank-two vector bundles, H -stable with Chern classes c 1 and c 2 . We prove that, if there exists c 1 ' such that c 1 is numerically equivalent to 2 c 1 ' and if c 2 - 1 4 c 1 2 is even, greater or equal to H 2 + H K + 4 , then there is no Poincaré bundle on M H ( c 1 , c 2 ) × X . Conversely, if there exists c 1 ' such that the number c 1 ' · c 1 is odd or if 1 2 c 1 2 - 1 2 c 1 · K - c 2 is odd, then there exists a Poincaré bundle on M H ( c 1 , c 2 ) × X .

Line bundles with c 1 L 2 = 0 . Higher order obstruction

Stefano De Michelis (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We study secondary obstructions to representing a line bundle as the pull-back of a line bundle on S 2 and we interpret them geometrically.