A generalization of the Malgrange-Zerner theorem
Ludwik M. Drużkowski (1980)
Annales Polonici Mathematici
Similarity:
Ludwik M. Drużkowski (1980)
Annales Polonici Mathematici
Similarity:
Ludwik M. Drużkowski (1983)
Annales Polonici Mathematici
Similarity:
Bui Dac Tac (1991)
Annales Polonici Mathematici
Similarity:
Studying the sequential completeness of the space of germs of Banach-valued holomorphic functions at a points of a metric vector space some theorems on extension of holomorphic maps on Riemann domains over topological vector spaces with values in some locally convex analytic spaces are proved. Moreover, the extendability of holomorphic maps with values in complete C-spaces to the envelope of holomorphy for the class of bounded holomorphic functions is also established. These results...
Zbigniew Slodkowski (1995)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Peter Pflug (2003)
Annales Polonici Mathematici
Similarity:
This note is an attempt to describe a part of the historical development of the research on separately holomorphic functions.
Tran Ngoc Giao (1994)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
Shamoyan, Romi, Li, Songxiao (2008)
Banach Journal of Mathematical Analysis [electronic only]
Similarity:
Armen Edigarian, Said El Marzguioui, Jan Wiegerinck (2010)
Annales Polonici Mathematici
Similarity:
We prove that the image of a finely holomorphic map on a fine domain in ℂ is a pluripolar subset of ℂⁿ. We also discuss the relationship between pluripolar hulls and finely holomorphic functions.
M. Nikić (1988)
Matematički Vesnik
Similarity:
E. M. Chirka (2003)
Annales Polonici Mathematici
Similarity:
If Σ is a compact subset of a domain Ω ⊂ ℂ and the cluster values on ∂Σ of a holomorphic function f in Ω∖Σ, f' ≢ 0, are contained in a compact null-set for the holomorphic Dirichlet class, then f extends holomorphically onto the whole domain Ω.
A. Kriegl, L. D. Nel (1985)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity: