Displaying similar documents to “On the propagation of singularities of semi-convex functions”

A simple proof of the propagation of singularities for solutions of Hamilton-Jacobi equations

Yifeng Yu (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

In Albano-Cannarsa [1] the authors proved that, under some conditions, the singularities of the semiconcave viscosity solutions of the Hamilton-Jacobi equation propagate along generalized characteristics. In this note we will provide a simple proof of this interesting result.

Regularity of convex functions on Heisenberg groups

Zoltán M. Balogh, Matthieu Rickly (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We discuss differentiability properties of convex functions on Heisenberg groups. We show that the notions of horizontal convexity (h-convexity) and viscosity convexity (v-convexity) are equivalent and that h-convex functions are locally Lipschitz continuous. Finally we exhibit Weierstrass-type h-convex functions which are nowhere differentiable in the vertical direction on a dense set or on a Cantor set of vertical lines.

Singularities of convex hulls as fronts of Legendre varieties

Ilia Bogaevski (1999)

Banach Center Publications

Similarity:

We describe singularities of the convex hull of a generic compact smooth hypersurface in four-dimensional affine space up to diffeomorphism. It turns out that the boundary of the convex hull is the front of a Legendre variety. Its singularities are classified up to contact diffeomorphism.