Structural properties of singularities of semiconcave functions
Paolo Albano; Piermarco Cannarsa
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1999)
- Volume: 28, Issue: 4, page 719-740
- ISSN: 0391-173X
Access Full Article
topHow to cite
topAlbano, Paolo, and Cannarsa, Piermarco. "Structural properties of singularities of semiconcave functions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 28.4 (1999): 719-740. <http://eudml.org/doc/84395>.
@article{Albano1999,
author = {Albano, Paolo, Cannarsa, Piermarco},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {semiconcave functions; Lipschitz singular sets; singular points; distance functions},
language = {eng},
number = {4},
pages = {719-740},
publisher = {Scuola normale superiore},
title = {Structural properties of singularities of semiconcave functions},
url = {http://eudml.org/doc/84395},
volume = {28},
year = {1999},
}
TY - JOUR
AU - Albano, Paolo
AU - Cannarsa, Piermarco
TI - Structural properties of singularities of semiconcave functions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1999
PB - Scuola normale superiore
VL - 28
IS - 4
SP - 719
EP - 740
LA - eng
KW - semiconcave functions; Lipschitz singular sets; singular points; distance functions
UR - http://eudml.org/doc/84395
ER -
References
top- [1] P. Albano — P. Cannarsa, Singularities of semiconcave functions in Banach spaces, In: " Stochastic Analysis, Control, Optimization and Applications", W. M. McENEANEY — G. G. YIN — Q. ZHANG (eds.), Birkhäuser, Boston, 1999, pp. 171-190. Zbl0923.49010MR1702959
- [2] G. Alberti, On the structure of singular sets of convex functions, Calc. Var. Partial Differential Equations2 (1994), 17-27. Zbl0790.26010MR1384392
- [3] G. Alberti - L. Ambrosio - P. Cannarsa, On the singularities of convex functions, Manuscripta Math.76 (1992), 421-435. Zbl0784.49011MR1185029
- [4] L. Ambrosio - P. Cannarsa - H.M. Soner, On the propagation of singularities of semi-convex functions, Annali Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), 597-616. Zbl0874.49041MR1267601
- [5] G. Anzellotti - E. Ossanna, Singular sets of convex bodies and surfaces with generalized curvatures, Manuscripta Math.86 (1995), 417-433. Zbl0837.49020MR1324680
- [6] M. Bardi - I. Capuzzo Dolcetta, "Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations", Birkhduser, Boston, 1997. Zbl0890.49011MR1484411
- [7] K. Bartke - H. Berens, Eine beschreibung der nichteindeutigkeitsmenge für die beste approximation in der euklidischen ebene, J. Approx. Theory47 (1986), 54-74. Zbl0619.41020MR843455
- [8] P. Cannarsa - H. Frankowska, Some characterizations of optimal trajectories in control theory, SIAM J. Control Optim.29 (1991), 1322-1347. Zbl0744.49011MR1132185
- [9] P. Cannarsa - C. Sinestrari, Convexity properties of the minimum time function, Calc. Var. Partial Differential Equations3 (1995), 273-298. Zbl0836.49013MR1385289
- [10] P. Cannarsa - H.M. Soner, On the singularities of the viscosity solutions to Hamilton-Jacobi-Bellman equations, Indiana Univ. Math. J.36 (1987), 501-524. Zbl0612.70016MR905608
- [11] F.H. Clarke - YU. S. LEDYAEV - R.J. Stern - P.R. Wolenski, "Nonsmooth analysis and control theory", Graduate Texts in Mathematics, Springer, New York, 1998. Zbl1047.49500MR1488695
- [12] M.G. Crandall - L.C. Evans - P.L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc.282 (1984), 487-502. Zbl0543.35011MR732102
- [13] M.G. Crandall - H. Ishii - P.L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc.27 (1992), 1-67. Zbl0755.35015MR1118699
- [14] M.G. Crandall - P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc.277 (1983), 1-42. Zbl0599.35024MR690039
- [15] A. Douglis, The continuous dependence of generalized solutions of non-linear partial differential equations upon initial data, Comm. Pure Appl. Math.14 (1961), 267-284. Zbl0117.31102MR139848
- [16] P. Erdös, Some remarks on the measurability of certain sets, Bull. Amer. Math. Soc.51 (1945), 728-731. Zbl0063.01269MR13776
- [17] W.H. Fleming, "Functions of several variables", Springer, New York, 1977. Zbl0348.26002MR422527
- [18] W.H. Fleming - H.M. Soner, "Controlled Markov processes and viscosity solutions", Springer, Berlin, 1993. Zbl0773.60070MR1199811
- [19] L. Hörmander, "Notions of convexity", Birkhäuser, Boston, 1994. Zbl0835.32001MR1301332
- [20] S.N. Kruzhkov, Generalized solutions of Hamilton-Jacobi equations of the eikonal type I, Math. USSR Sb.27 (1975), 406-445.
- [21] H. Ishii, Uniqueness of unbounded viscosity solutions of Hamilton-Jacobi equations, Indiana Univ. Math. J.33 (1984), 721-748. Zbl0551.49016MR756156
- [22] P.L. Lions, "Generalized solutions of Hamilton-Jacobi equations", Pitman, Boston, 1982. Zbl0497.35001MR667669
- [23] TH. Motzkin, Sur quelques propriétés caractéristiques des ensembles convexes, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.21 (1935), 562-567. Zbl0011.41105
- [24] A.I. Subbotin, "Generalized solutions of first order PDEs: the dynamic optimization perspective", Birkhduser, Boston, 1995. Zbl0820.35003MR1320507
- [25] L. Veselý, On the multiplicity points of monotone operators on separable Banach spaces, Comment. Math. Univ. Carolin.27 (1986), 551-570. Zbl0616.47043MR873628
- [26] L. Veselý, On the multiplicity points of monotone operators on separable Banach spaces II, Comment. Math. Univ. Carolin.28 (1987), 295-299. Zbl0644.47047MR904754
- [27] L. Veselý, A connectedness property of maximal monotone operators and its application to approximation theory, Proc. Amer. Math. Soc.115 (1992), 663-667. Zbl0762.47024MR1095227
- [28] U. Westphal — J. Frerking, On a property of metric projections onto closed subsets of Hilbert spaces, Proc. Amer. Math. Soc.105 (1989), 644-651. Zbl0676.41036MR946636
- [29] L Zajíček, On the points of multiplicity of monotone operators, Comment. Math. Univ. Carolin.19 (1978), 179-189. Zbl0404.47025MR493541
- [30] L Zajíček, On the differentiation of convex functions in finite and infinite dimensional spaces, Czechoslovak Math. J.29 (1979), 340-348. Zbl0429.46007MR536060
Citations in EuDML Documents
top- Pietro Albano, Singolarità di funzioni semiconcave ed applicazioni al controllo ottimo
- Yifeng Yu, A simple proof of the propagation of singularities for solutions of Hamilton-Jacobi equations
- Piermarco Cannarsa, Generalized gradient flow and singularities of the Riemannian distance function
- Ludovic Rifford, Stratified semiconcave control-Lyapunov functions and the stabilization problem
- Piermarco Cannarsa, Funzioni semiconcave, singolarità e pile di sabbia
- Emmanuel Trélat, Global subanalytic solutions of Hamilton–Jacobi type equations
- Italo Capuzzo Dolcetta, Soluzioni di viscosità
- Luděk Zajíček, A note on propagation of singularities of semiconcave functions of two variables
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.