Displaying similar documents to “On the Legendre and Laplace transformations”

Regularity of convex functions on Heisenberg groups

Zoltán M. Balogh, Matthieu Rickly (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We discuss differentiability properties of convex functions on Heisenberg groups. We show that the notions of horizontal convexity (h-convexity) and viscosity convexity (v-convexity) are equivalent and that h-convex functions are locally Lipschitz continuous. Finally we exhibit Weierstrass-type h-convex functions which are nowhere differentiable in the vertical direction on a dense set or on a Cantor set of vertical lines.

A minimax inequality with applications to existence of equilibrium point and fixed point theorems

Xie Ding, Kok-Keong Tan (1992)

Colloquium Mathematicae

Similarity:

Ky Fan’s minimax inequality [8, Theorem 1] has become a versatile tool in nonlinear and convex analysis. In this paper, we shall first obtain a minimax inequality which generalizes those generalizations of Ky Fan’s minimax inequality due to Allen [1], Yen [18], Tan [16], Bae Kim Tan [3] and Fan himself [9]. Several equivalent forms are then formulated and one of them, the maximal element version, is used to obtain a fixed point theorem which in turn is applied to obtain an existence...

The cancellation law for inf-convolution of convex functions

Dariusz Zagrodny (1994)

Studia Mathematica

Similarity:

Conditions under which the inf-convolution of f and g f g ( x ) : = i n f y + z = x ( f ( y ) + g ( z ) ) has the cancellation property (i.e. f □ h ≡ g □ h implies f ≡ g) are treated in a convex analysis framework. In particular, we show that the set of strictly convex lower semicontinuous functions f : X + on a reflexive Banach space such that l i m x f ( x ) / x = constitutes a semigroup, with inf-convolution as multiplication, which can be embedded in the group of its quotients.