The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On Liouville theorem and apriori estimates for the scalar curvature equations”

Prescribing a fourth order conformal invariant on the standard sphere, part II : blow up analysis and applications

Zindine Djadli, Andrea Malchiodi, Mohameden Ould Ahmedou (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

In this paper we perform a fine blow up analysis for a fourth order elliptic equation involving critical Sobolev exponent, related to the prescription of some conformal invariant on the standard sphere ( 𝕊 n , h ) . We derive from this analysis some a priori estimates in dimension 5 and 6 . On 𝕊 5 these a priori estimates, combined with the perturbation result in the first part of the present work, allow us to obtain some existence result using a continuity method. On 𝕊 6 we prove the existence of at...

Prescribing Q -curvature on higher dimensional spheres

Khalil El Mehdi (2005)

Annales mathématiques Blaise Pascal

Similarity:

We study the problem of prescribing a fourth order conformal invariant on higher dimensional spheres. Particular attention is paid to the blow-up points, i.e. the critical points at infinity of the corresponding variational problem. Using topological tools and a careful analysis of the gradient flow lines in the neighborhood of such critical points at infinity, we prove some existence results.