The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Sur la fonction ( x - 1 ) a

Indépendance linéaire et algébrique de fonctions liées à la fonction q -dzeta

Jean-Paul Bézivin (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Pour q , | q | < 1 , on définit la q -analogue de la fonction zeta de Riemann par les égalités ζ q ( k ) = n 1 σ k - 1 ( n ) q n = n 1 n k - 1 q n 1 - q n . Dans [8], W. Zudilin énonce deux questions à propos de ces fonctions de q . La première concerne l’indépendance linéaire sur ( q ) des fonctions ζ q ( k ) , pour k 1 , et la seconde l’indépendance algébrique sur ( q ) des fonctions ζ q ( 2 ) , ζ q ( 4 ) , ζ q ( 6 ) , et des fonctions ζ q ( 2 k + 1 ) , k 0 . Dans [5], Y. Pupyrev répond positivement à la première question, et donne des résultats partiels pour la seconde. Dans cet article, nous considérons...

Sur une équation de Langmuir généralisée

René Gosse (1949)

Annales de l'institut Fourier

Similarity:

Cet article posthume extrait de notes ou brouillons par E. Cotton concerne, pour les équations de la forme y ' ' + y ' p ( x , y , y ' ) + q ( x ) d a ( y ) d y = f ( y ) , la solution définie par les conditions initiales x = x 0 , y = y 0 , y ' = 0 . Après avoir énoncé des hypothèses concernant les fonctions p , q , a , f , l’auteur montre que toute solution qui passe par un minimum pour x = x 0 , reste supérieure à ce minimum pour x > x 0 et que, dans ces mêmes conditions, | y | et | y ' | restent bornés. Enfin, lorsque p a une borne inférieure positive, y ' tend vers zéro avec...