Curvature and holomorphic mappings of complete Kähler manifolds
Peter Li, Shing-Tung Yau (1990)
Compositio Mathematica
Similarity:
Peter Li, Shing-Tung Yau (1990)
Compositio Mathematica
Similarity:
Ngaiming Mok, Yum-Tong Siu, Shing-Tung Yau (1981)
Compositio Mathematica
Similarity:
Linda Ness (1977)
Compositio Mathematica
Similarity:
Alfred Gray, Lieven Vanhecke (1979)
Časopis pro pěstování matematiky
Similarity:
Shun-Ichi Tachibana (1972)
Colloquium Mathematicae
Similarity:
Żywomir Dinew (2010)
Annales Polonici Mathematici
Similarity:
We study the behaviour of the holomorphic sectional curvature (or Gaussian curvature) of the Bergman metric of planar annuli. The results are then utilized to construct a domain for which the curvature is divergent at one of its boundary points and moreover the upper limit of the curvature at that point is maximal possible, equal to 2, whereas the lower limit is -∞.
Harish Seshadri (2007-2008)
Séminaire de théorie spectrale et géométrie
Similarity:
We discuss the notion of isotropic curvature of a Riemannian manifold and relations between the sign of this curvature and the geometry and topology of the manifold.
Demir N. Kupeli (1993)
Manuscripta mathematica
Similarity: