Subgroups of locally normal groups
B. Hartley (1976)
Compositio Mathematica
Similarity:
B. Hartley (1976)
Compositio Mathematica
Similarity:
Leonid A. Kurdachenko, Igor Ya. Subbotin (2007)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
The article is dedicated to groups in which the set of abnormal and normal subgroups (-subgroups) forms a lattice. A complete description of these groups under the additional restriction that every counternormal subgroup is abnormal is obtained.
Francesco de Giovanni, Alessio Russo (2002)
Mathematica Slovaca
Similarity:
Leonid Kurdachenko, Alexsandr Pypka, Igor Subbotin (2010)
Open Mathematics
Similarity:
New results on tight connections among pronormal, abnormal and contranormal subgroups of a group have been established. In particular, new characteristics of pronormal and abnormal subgroups have been obtained.
Sergio Camp-Mora (2013)
Open Mathematics
Similarity:
A subgroup H of a group G is called ascendant-by-finite in G if there exists a subgroup K of H such that K is ascendant in G and the index of K in H is finite. It is proved that a locally finite group with every subgroup ascendant-by-finite is locally nilpotent-by-finite. As a consequence, it is shown that the Gruenberg radical has finite index in the whole group.
Vladimir O. Lukyanenko, Alexander N. Skiba (2010)
Rendiconti del Seminario Matematico della Università di Padova
Similarity: