The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A bound for the degree of smooth surfaces in P 4 not of general type”

Stanley depth of monomial ideals with small number of generators

Mircea Cimpoeaş (2009)

Open Mathematics

Similarity:

For a monomial ideal I ⊂ S = K[x 1...,x n], we show that sdepth(S/I) ≥ n − g(I), where g(I) is the number of the minimal monomial generators of I. If I =νI′, where ν ∈ S is a monomial, then we see that sdepth(S/I) = sdepth(S/I′). We prove that if I is a monomial ideal I ⊂ S minimally generated by three monomials, then I and S/I satisfy the Stanley conjecture. Given a saturated monomial ideal I ⊂ K[x 1,x 2,x 3] we show that sdepth(I) = 2. As a consequence, sdepth(I) ≥ sdepth(K[x 1,x 2,x...