The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Degenerations of moduli of stable bundles over algebraic curves”

Poincaré bundles for projective surfaces

Nicole Mestrano (1985)

Annales de l'institut Fourier

Similarity:

Let X be a smooth projective surface, K the canonical divisor, H a very ample divisor and M H ( c 1 , c 2 ) the moduli space of rank-two vector bundles, H -stable with Chern classes c 1 and c 2 . We prove that, if there exists c 1 ' such that c 1 is numerically equivalent to 2 c 1 ' and if c 2 - 1 4 c 1 2 is even, greater or equal to H 2 + H K + 4 , then there is no Poincaré bundle on M H ( c 1 , c 2 ) × X . Conversely, if there exists c 1 ' such that the number c 1 ' · c 1 is odd or if 1 2 c 1 2 - 1 2 c 1 · K - c 2 is odd, then there exists a Poincaré bundle on M H ( c 1 , c 2 ) × X .

Remarks on Seshadri constants of vector bundles

Christopher Hacon (2000)

Annales de l'institut Fourier

Similarity:

We give a lower bound for the Seshadri constants of ample vector bundles which depends only on the numerical properties of the Chern classes and on a “stability” condition.