Displaying similar documents to “A-quasiconvexity : relaxation and homogenization”

Integral representation and Γ -convergence of variational integrals with p ( x ) -growth

Alessandra Coscia, Domenico Mucci (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study the integral representation properties of limits of sequences of integral functionals like f ( x , D u ) d x under nonstandard growth conditions of ( p , q ) -type: namely, we assume that | z | p ( x ) f ( x , z ) L ( 1 + | z | p ( x ) ) . Under weak assumptions on the continuous function p ( x ) , we prove Γ -convergence to integral functionals of the same type. We also analyse the case of integrands f ( x , u , D u ) depending explicitly on u ; finally we weaken the assumption allowing p ( x ) to be discontinuous on nice sets.

A positive solution for an asymptotically linear elliptic problem on N autonomous at infinity

Louis Jeanjean, Kazunaga Tanaka (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we establish the existence of a positive solution for an asymptotically linear elliptic problem on N . The main difficulties to overcome are the lack of a priori bounds for Palais–Smale sequences and a lack of compactness as the domain is unbounded. For the first one we make use of techniques introduced by Lions in his work on concentration compactness. For the second we show how the fact that the “Problem at infinity” is autonomous, in contrast to just periodic, can be...

Homogenization of variational problems in manifold valued Sobolev spaces

Jean-François Babadjian, Vincent Millot (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Homogenization of integral functionals is studied under the constraint that admissible maps have to take their values into a given smooth manifold. The notion of tangential homogenization is defined by analogy with the tangential quasiconvexity introduced by Dacorogna [  (1999) 185–206]. For energies with superlinear or linear growth, a -convergence result is established in Sobolev spaces, the homogenization problem in the space of functions of bounded variation being the object of...