A-quasiconvexity : weak-star convergence and the gap
Irene Fonseca; Giovanni Leoni; Stefan Müller
Annales de l'I.H.P. Analyse non linéaire (2004)
- Volume: 21, Issue: 2, page 209-236
- ISSN: 0294-1449
Access Full Article
topHow to cite
topFonseca, Irene, Leoni, Giovanni, and Müller, Stefan. "A-quasiconvexity : weak-star convergence and the gap." Annales de l'I.H.P. Analyse non linéaire 21.2 (2004): 209-236. <http://eudml.org/doc/78616>.
@article{Fonseca2004,
author = {Fonseca, Irene, Leoni, Giovanni, Müller, Stefan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {non-standard growth conditions; lower semicontinuity},
language = {eng},
number = {2},
pages = {209-236},
publisher = {Elsevier},
title = {A-quasiconvexity : weak-star convergence and the gap},
url = {http://eudml.org/doc/78616},
volume = {21},
year = {2004},
}
TY - JOUR
AU - Fonseca, Irene
AU - Leoni, Giovanni
AU - Müller, Stefan
TI - A-quasiconvexity : weak-star convergence and the gap
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 2
SP - 209
EP - 236
LA - eng
KW - non-standard growth conditions; lower semicontinuity
UR - http://eudml.org/doc/78616
ER -
References
top- [1] E. Acerbi, G. Bouchitté, I. Fonseca, Relaxation of convex functionals and the Lavrentiev phenomenon, submitted for publication. Zbl1025.49012
- [2] Acerbi E., Buttazzo G., Fusco N., Semicontinuity and relaxation for integrals depending on vector valued functions, J. Math. Pures Appl.62 (1983) 371-387. Zbl0481.49013MR735930
- [3] Acerbi E., Dal Maso G., New lower semicontinuity results for polyconvex integrals case, Calc. Var.2 (1994) 329-372. Zbl0810.49014MR1385074
- [4] Acerbi E., Fusco N., Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal.86 (1984) 125-145. Zbl0565.49010MR751305
- [5] Ambrosio L., Fusco N., Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Mathematical Monographs, Oxford University Press, 2000. Zbl0957.49001MR1857292
- [6] Ambrosio L., Dal Maso G., On the relaxation in BV(Ω;Rm) of quasi-convex integrals, J. Funct. Anal.109 (1992) 76-97. Zbl0769.49009
- [7] Ball J., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal.63 (1977) 337-403. Zbl0368.73040MR475169
- [8] Ball J.M., Murat F., W1,p quasiconvexity and variational problems for multiple integrals, J. Funct. Anal.58 (1984) 225-253. Zbl0549.46019MR759098
- [9] Bouchitté G., Fonseca I., Malý J., Relaxation of multiple integrals below the growth exponent, Proc. Roy. Soc. Edinburgh Sect. A128 (1998) 463-479. Zbl0907.49008MR1632814
- [10] Braides A., Fonseca I., Leoni G., A-quasiconvexity: relaxation and homogenization, ESAIM:COCV5 (2000) 539-577. Zbl0971.35010MR1799330
- [11] Burenkov V.I., Sobolev Spaces on Domains, Teuber, Stuttgart, 1998. Zbl0893.46024MR1622690
- [12] Celada P., Dal Maso G., Further remarks on the lower semicontinuity of polyconvex integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire11 (1994) 661-691. Zbl0833.49013MR1310627
- [13] Dacorogna B., Weak Continuity and Weak Lower Semicontinuity for Nonlinear Functionals, Lecture Notes in Mathem., vol. 922, Springer, Berlin, 1982. Zbl0484.46041MR658130
- [14] Dacorogna B., Direct Methods in the Calculus of Variations, Springer, New York, 1989. Zbl0703.49001MR990890
- [15] Dal Maso G., Sbordone C., Weak lower semicontinuity of polyconvex integrals: a borderline case, Math. Z.218 (1995) 603-609. Zbl0822.49010MR1326990
- [16] De Simone A., Energy minimizers for large ferromagnetic bodies, Arch. Rational Mech. Anal.125 (1993) 99-143. Zbl0811.49030MR1245068
- [17] Demengel F., Fonctions à hessien borné, Ann. Inst. Fourier34 (1984) 155-190. Zbl0525.46020MR746501
- [18] L. Esposito, F. Leonetti, G. Mingione, Sharp regularity for functionals with (p,q) growth, Preprint. Zbl1072.49024MR2076158
- [19] L. Esposito, G. Mingione, Relaxation results for higher order integrals below the natural growth exponent, Differential Integral Equations, submitted for publication. Zbl1030.49013MR1893841
- [20] I. Fonseca, G. Leoni, J. Malý, Weak continuity and lower semicontinuity results for determinants, in preparation. Zbl1081.49013
- [21] Fonseca I., Malý J., Relaxation of multiple integrals below the growth exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire14 (1997) 308-338. Zbl0868.49011MR1450951
- [22] Fonseca I., Marcellini P., Relaxation of multiple integrals in subcritical Sobolev spaces, J. Geom. Anal.7 (1997) 57-81. Zbl0915.49011MR1630777
- [23] Fonseca I., Müller S., Quasiconvex integrands and lower semicontinuity in L1, SIAM J. Math. Anal.23 (1992) 1081-1098. Zbl0764.49012MR1177778
- [24] Fonseca I., Müller S., Relaxation of quasiconvex functionals in BV(Ω,Rp) for integrands f(x,u,∇u), Arch. Rational Mech. Anal.123 (1993) 1-49. Zbl0788.49039
- [25] Fonseca I., Müller S., A-quasiconvexity, lower semicontinuity and Young measures, SIAM J. Math. Anal.30 (1999) 1355-1390. Zbl0940.49014MR1718306
- [26] Gagliardo E., Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Padova27 (1957) 283-305. Zbl0087.10902MR102739
- [27] Gangbo W., On the weak lower semicontinuity of energies with polyconvex integrands, J. Math. Pures Appl.73 (1994) 455-469. Zbl0829.49011MR1300984
- [28] Guidorzi M., Poggiolini L., Lower semicontinuity for quasiconvex integrals of higher order, Nonlinear Differential Equations Appl.6 (1999) 227-246. Zbl0930.35059MR1691445
- [29] Kristensen J., Lower semicontinuity of quasi-convex integrands in BV, Calc. Var.7 (1998) 249-261. Zbl0915.49007MR1651438
- [30] Malý J., Weak lower semicontinuity of polyconvex integrals, Proc. Roy. Soc. Edinburgh Sect. A123 (1993) 681-691. Zbl0813.49017MR1237608
- [31] Malý J., Lower semicontinuity of quasiconvex integrals, Manuscripta Math.85 (1994) 419-428. Zbl0862.49017MR1305752
- [32] Marcellini P., Approximation of quasiconvex functions and lower semicontinuity of multiple integrals quasiconvex integrals, Manuscripta Math.51 (1985) 1-28. Zbl0573.49010MR788671
- [33] Marcellini P., On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire3 (1986) 391-409. Zbl0609.49009MR868523
- [34] Maz'ja V.G., Sobolev Spaces, Springer, Berlin, 1985. MR817985
- [35] Meyers N.G., Quasi-convexity and lower semi-continuity of multiple variational integrals of any order, Trans. Amer. Math. Soc.119 (1965) 125-149. Zbl0166.38501MR188838
- [36] Morrey C.B., Multiple Integrals in the Calculus of Variations, Springer, Berlin, 1966. Zbl0142.38701MR202511
- [37] Murat F., Compacité par compensation : condition necessaire et suffisante de continuité faible sous une hypothése de rang constant, Ann. Sc. Norm. Sup. Pisa8 (4) (1981) 68-102. Zbl0464.46034MR616901
- [38] Pedregal P., Parametrized Measures and Variational Principles, Birkhäuser, Boston, 1997. Zbl0879.49017MR1452107
- [39] P. Santos, E. Zappale, in preparation.
- [40] Serrin J., On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc.161 (1961) 139-167. Zbl0102.04601MR138018
- [41] Stein E.M., Harmonic Analysis, Princeton University Press, 1993. Zbl0821.42001MR1232192
- [42] Tartar L., Compensated compactness and applications to partial differential equations, in: Knops R. (Ed.), Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, vol. IV, Res. Notes Math., vol. 39, Pitman, 1979, pp. 136-212. Zbl0437.35004MR584398
- [43] Tartar L., The compensated compactness method applied to systems of conservation laws, in: Ball J.M. (Ed.), Systems of Nonlinear Partial Differential Eq., Riedel, 1983. Zbl0536.35003MR725524
- [44] Tartar L., Étude des oscillations dans les équations aux dérivées partielles nonlinéaires, in: Lecture Notes in Phys., vol. 195, Springer, Berlin, 1984, pp. 384-412. Zbl0595.35012MR755737
- [45] Tartar L., H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A115 (1990) 193-230. Zbl0774.35008MR1069518
- [46] Tartar L., On mathematical tools for studying partial differential equations of continuum physics: H-measures and Young measures, in: Buttazzo, Galdi, Zanghirati (Eds.), Developments in Partial Differential Equations and Applications to Mathematical Physics, Plenum, New York, 1991. Zbl0897.35010MR1213932
- [47] Tartar L., Some remarks on separately convex functions, in: Kinderlehrer D., James R.D., Luskin M., Ericksen J.L. (Eds.), Microstructure and Phase Transitions, IMA Vol. Math. Appl., vol. 54, Springer, Berlin, 1993, pp. 191-204. Zbl0823.26008MR1320538
- [48] Zhikov V.V., On Lavrentiev's phenomenon, Russian J. Math. Phys.3 (1995) 249-269. Zbl0910.49020MR1350506
- [49] Zhikov V.V., On some variational problems, Russian J. Math. Phys.5 (1997) 105-116. Zbl0917.49006MR1486765
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.