Displaying similar documents to “Control of the Wave Equation by Time-Dependent Coefficient”

The control of drilling vibrations: A coupled PDE-ODE modeling approach

Belem Saldivar, Sabine Mondié, Juan Carlos Avila Vilchis (2016)

International Journal of Applied Mathematics and Computer Science

Similarity:

The main purpose of this contribution is the control of both torsional and axial vibrations occurring along a rotary oilwell drilling system. The model considered consists of a wave equation coupled to an ordinary differential equation (ODE) through a nonlinear function describing the rock-bit interaction. We propose a systematic method to design feedback controllers guaranteeing ultimate boundedness of the system trajectories and leading consequently to the suppression of harmful dynamics....

The anti-disturbance property of a closed-loop system of 1-d wave equation with boundary control matched disturbance

Xiao-Rui Wang, Gen-Qi Xu (2019)

Applications of Mathematics

Similarity:

We study the anti-disturbance problem of a 1-d wave equation with boundary control matched disturbance. In earlier literature, the authors always designed the controller such as the sliding mode control and the active disturbance rejection control to stabilize the system. However, most of the corresponding closed-loop systems are boundedly stable. In this paper we show that the linear feedback control also has a property of anti-disturbance, even if the disturbance includes some information...

Control of the wave equation by time-dependent coefficient

Antonin Chambolle, Fadil Santosa (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study an initial boundary-value problem for a wave equation with time-dependent sound speed. In the control problem, we wish to determine a sound-speed function which damps the vibration of the system. We consider the case where the sound speed can take on only two values, and propose a simple control law. We show that if the number of modes in the vibration is finite, and none of the eigenfrequencies are repeated, the proposed control law does lead to energy decay. We illustrate...

On time optimal control of the wave equation, its regularization and optimality system

Karl Kunisch, Daniel Wachsmuth (2013)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

An approximation procedure for time optimal control problems for the linear wave equation is analyzed. Its asymptotic behavior is investigated and an optimality system including the maximum principle and the transversality conditions for the regularized and unregularized problems are derived.

Predictor control for wave PDE / nonlinear ODE cascaded system with boundary value-dependent propagation speed

Xiushan Cai, Yuhang Lin, Junfeng Zhang, Cong Lin (2022)

Kybernetika

Similarity:

This paper investigates predictor control for wave partial differential equation (PDE) and nonlinear ordinary differential equation (ODE) cascaded system with boundary value-dependent propagation speed. A predictor control is designed first. A two-step backstepping transformation and a new time variable are employed to derive a target system whose stability is established using Lyapunov arguments. The equivalence between stability of the target and the original system is provided using...

Analytic controllability of the wave equation over a cylinder

Brice Allibert (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We analyze the controllability of the wave equation on a cylinder when the control acts on the boundary, that does not satisfy the classical geometric control condition. We obtain precise estimates on the analyticity of reachable functions. As the control time increases, the degree of analyticity that is required for a function to be reachable decreases as an inverse power of time. We conclude that any analytic function can be reached if that control time is large enough. In the...

On the nonlinear stabilization of the wave equation

Aissa Guesmia (1998)

Annales Polonici Mathematici

Similarity:

We obtain a precise decay estimate of the energy of the solutions to the initial boundary value problem for the wave equation with nonlinear internal and boundary feedbacks. We show that a judicious choice of the feedbacks leads to fast energy decay.

On domain decomposition methods for optimal control problems

Tran, Minh-Binh

Similarity:

In this note, we introduce a new approach to study overlapping domain decomposition methods for optimal control systems governed by partial differential equations. The model considered in our paper is systems governed by wave equations. Our technique could be used for several other equations as well.