Partial regularity of minimizers of higher order integrals with (p, q)-growth
ESAIM: Control, Optimisation and Calculus of Variations (2011)
- Volume: 17, Issue: 2, page 472-492
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topSchemm, Sabine. "Partial regularity of minimizers of higher order integrals with (p, q)-growth." ESAIM: Control, Optimisation and Calculus of Variations 17.2 (2011): 472-492. <http://eudml.org/doc/276327>.
@article{Schemm2011,
abstract = {
We consider higher order functionals of the form$F[u]=\int\limits_\Omega f(D^mu)\,\{\rm d\}x \qquad\text\{for \}u:\mathbb\{R\}^n\supset\Omega\to\mathbb\{R\}^N,$
where the integrand $f:\{\textstyle \bigodot^m\}(\R^\{n\},\R^\{N\})\to\mathbb\{R\}$,
m≥ 1 is strictly quasiconvex and satisfies a non-standard growth condition.
More precisely we assume that f fulfills the (p, q)-growth condition
\[\gamma|A|^p\le f(A)\le L(1+|A|^q)\qquad \mbox\{for all \}A \in \{\textstyle \bigodot^m\}(\R^\{n\},\R^\{N\}),\]with γ, L > 0 and $1< p \le q<\min\big\\{p+\frac1n,\frac\{2n-1\}\{2n-2\}p\big\\}$. We study minimizers of the
functional $F[\cdot]$ and prove a partial $C^\{m,\alpha\}_\{\rm loc\}$-regularity result.
},
author = {Schemm, Sabine},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Higher order functionals; non-standard growth; regularity theory; higher order functionals},
language = {eng},
month = {5},
number = {2},
pages = {472-492},
publisher = {EDP Sciences},
title = {Partial regularity of minimizers of higher order integrals with (p, q)-growth},
url = {http://eudml.org/doc/276327},
volume = {17},
year = {2011},
}
TY - JOUR
AU - Schemm, Sabine
TI - Partial regularity of minimizers of higher order integrals with (p, q)-growth
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2011/5//
PB - EDP Sciences
VL - 17
IS - 2
SP - 472
EP - 492
AB -
We consider higher order functionals of the form$F[u]=\int\limits_\Omega f(D^mu)\,{\rm d}x \qquad\text{for }u:\mathbb{R}^n\supset\Omega\to\mathbb{R}^N,$
where the integrand $f:{\textstyle \bigodot^m}(\R^{n},\R^{N})\to\mathbb{R}$,
m≥ 1 is strictly quasiconvex and satisfies a non-standard growth condition.
More precisely we assume that f fulfills the (p, q)-growth condition
\[\gamma|A|^p\le f(A)\le L(1+|A|^q)\qquad \mbox{for all }A \in {\textstyle \bigodot^m}(\R^{n},\R^{N}),\]with γ, L > 0 and $1< p \le q<\min\big\{p+\frac1n,\frac{2n-1}{2n-2}p\big\}$. We study minimizers of the
functional $F[\cdot]$ and prove a partial $C^{m,\alpha}_{\rm loc}$-regularity result.
LA - eng
KW - Higher order functionals; non-standard growth; regularity theory; higher order functionals
UR - http://eudml.org/doc/276327
ER -
References
top- E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal.86 (1984) 125–145.
- E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal.99 (1987) 261–281.
- E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: the case 1<p<2. J. Math. Anal. Appl.140 (1989) 115–135.
- E. Acerbi and N. Fusco, Partial regularity under anisotropic (p, q) growth conditions. J. Differ. Equ.107 (1994) 46–67.
- E. Acerbi and G. Mingione, Regularity results for a class of quasiconvex functionals with nonstandard growth. Ann. Scuola Norm. Sup. Pisa Cl. Sci. IV30 (2001) 311–339.
- J.M. Ball and F. Murat, W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal.58 (1984) 225–253.
- M. Bildhauer and M. Fuchs, Partial regularity for variational integrals with (s, µ, q)-growth. Calc. Var. Partial Differ. Equ.13 (2001) 537–560.
- M. Bildhauer and M. Fuchs, C1, α-solutions to non-autonomous anisotropic variational problems. Calc. Var. Partial Differ. Equ.24 (2005) 309–340.
- G. Bouchitté, I. Fonseca and J. Malý, The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinburgh Sect. A128 (1998) 463–479.
- M. Carozza and A. Passarelli di Napoli, Partial regularity for anisotropic functionals of higher order. ESAIM: COCV13 (2007) 692–706.
- M. Carozza, N. Fusco and G. Mingione, Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Ann. Mat. Pura Appl. IV175 (1998) 141–164.
- G. Cupini, M. Guidorzi and E. Mascolo, Regularity of minimizers of vectorial integrals with p-q growth. Nonlinear Anal., Theory Methods Appl.54 (2003) 591–616.
- F. Duzaar and M. Kronz, Regularity of ω-minimizers of quasi-convex variational integrals with polynomial growth. Differ. Geom. Appl.17 (2002) 139–152.
- F. Duzaar and K. Steffen, Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals. J. Reine Angew. Math.546 (2002) 73–138.
- F. Duzaar, A. Gastel and J. Grotowski, Partial regularity for almost minimizers of quasi-convex integrals. SIAM J. Math. Anal.32 (2000) 665–687.
- F. Duzaar, J. Grotowski and M. Kronz, Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth. Ann. Mat. Pura Appl. IV184 (2005) 421–448.
- L. Esposito and G. Mingione, Relaxation results for higher order integrals below the natural growth exponent. Differ. Integral Equ.15 (2002) 671–696.
- L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with (p, q) growth. Forum Math.14 (2002) 245–272.
- L. Esposito, F. Leonetti and G. Mingione, Sharp regularity for functionals with (p, q) growth. J. Differ. Equ.204 (2004) 5–55.
- L.C. Evans, Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal.95 (1986) 227–252.
- I. Fonseca and J. Malý, Relaxation of multiple integrals below the growth exponent. Ann. Inst. Henri Poincaré Anal. Non Linéaire14 (1997) 309–338.
- I. Fonseca and J. Malý, From jacobian to hessian: distributional form and relaxation. Riv. Mat. Univ. Parma4 (2005) 45–74.
- N. Fusco and J. Hutchinson, C1, α partial regularity of functions minimising quasiconvex integrals. Manuscr. Math.54 (1984) 121–143.
- M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Princeton University Press, Princeton (1983).
- M. Giaquinta, Growth conditions and regularity, a counterexample. Manuscr. Math.59 (1987) 245–248.
- M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex integrals. Ann. Inst. Henri Poincaré Anal. Non Linéaire3 (1986) 185–208.
- M. Guidorzi, A remark on partial regularity of minimizers of quasiconvex integrals of higher order. Rend. Ist. Mat. Univ. Trieste32 (2000) 1–24.
- M. Guidorzi and L. Poggiolini, Lower semicontinuity of quasiconvex integrals of higher order. NoDEA6 (1999) 227–246.
- M.C. Hong, Some remarks on the minimizers of variational integrals with non standard growth conditions. Boll. Un. Mat. Ital. A6 (1992) 91–101.
- J. Kristensen, Lower semicontinuity in Sobolev spaces below the growth exponent of the integrand. Proc. Roy. Soc. Edinburgh Sect. A127 (1997) 797–817.
- J. Kristensen and G. Mingione, The singular set of lipschitzian minima of multiple integrals. Arch. Ration. Mech. Anal.184 (2007) 341–369.
- M. Kronz, Partial regularity results for minimizers of quasiconvex functionals of higher order. Ann. Inst. Henri Poincaré Anal. Non Linéaire19 (2002) 81–112.
- P. Marcellini, Approximation of quasiconvex functions and lower semicontinuity of multiple integrals. Manuscr. Math.51 (1985) 1–28.
- P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. Inst. Henri Poincaré Anal. Non Linéaire3 (1986) 391–409.
- P. Marcellini, Un exemple de solution discontinue d'un problème variationnel dans le cas scalaire. Preprint Istituto Matematico U. Dini, Universita' di Firenze (1987/1988), n. 11.
- P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non-standard growth conditions. Arch. Ration. Mech. Anal.105 (1989) 267–284.
- P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions. J. Differ. Equ.90 (1991) 1–30.
- P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. IV23 (1996) 1–25.
- N.G. Meyers, Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Am. Math. Soc.119 (1965) 125–149.
- C.B. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math.2 (1952) 25–53.
- A. Passarelli di Napoli and F. Siepe, A regularity result for a class of anisotropic systems. Rend. Ist. Mat. Univ. Trieste28 (1996) 13–31.
- S. Schemm and T. Schmidt, Partial regularity of strong local minimizers of quasiconvex integrals with (p, q)-growth. Proc. Roy. Soc. Edinburgh Sect. A139 (2009) 595–621.
- T. Schmidt, Regularity of minimizers of W1,p-quasiconvex variational integrals with (p, q)-growth. Calc. Var. Partial Differ. Equ.32 (2008) 1–24.
- T. Schmidt, Regularity of relaxed minimizers of quasiconvex variational integrals with (p, q)-growth. Arch. Ration. Mech. Anal.193 (2009) 311–337.
- F. Siepe and M. Guidorzi, Partial regularity for quasiconvex integrals of any order. Ric. Mat.52 (2003) 31–54.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.