Partial regularity of minimizers of higher order integrals with (p, q)-growth

Sabine Schemm

ESAIM: Control, Optimisation and Calculus of Variations (2011)

  • Volume: 17, Issue: 2, page 472-492
  • ISSN: 1292-8119

Abstract

top
We consider higher order functionals of the form F [ u ] = Ω f ( D m u ) d x for u : n Ω N , where the integrand f : m ( n , N ) , m≥ 1 is strictly quasiconvex and satisfies a non-standard growth condition. More precisely we assume that f fulfills the (p, q)-growth condition γ | A | p f ( A ) L ( 1 + | A | q ) for all A m ( n , N ) , with γ, L > 0 and 1 < p q < min { p + 1 n , 2 n - 1 2 n - 2 p } . We study minimizers of the functional F [ · ] and prove a partial C loc m , α -regularity result.

How to cite

top

Schemm, Sabine. "Partial regularity of minimizers of higher order integrals with (p, q)-growth." ESAIM: Control, Optimisation and Calculus of Variations 17.2 (2011): 472-492. <http://eudml.org/doc/276327>.

@article{Schemm2011,
abstract = { We consider higher order functionals of the form$F[u]=\int\limits_\Omega f(D^mu)\,\{\rm d\}x \qquad\text\{for \}u:\mathbb\{R\}^n\supset\Omega\to\mathbb\{R\}^N,$ where the integrand $f:\{\textstyle \bigodot^m\}(\R^\{n\},\R^\{N\})\to\mathbb\{R\}$, m≥ 1 is strictly quasiconvex and satisfies a non-standard growth condition. More precisely we assume that f fulfills the (p, q)-growth condition \[\gamma|A|^p\le f(A)\le L(1+|A|^q)\qquad \mbox\{for all \}A \in \{\textstyle \bigodot^m\}(\R^\{n\},\R^\{N\}),\]with γ, L > 0 and $1< p \le q<\min\big\\{p+\frac1n,\frac\{2n-1\}\{2n-2\}p\big\\}$. We study minimizers of the functional $F[\cdot]$ and prove a partial $C^\{m,\alpha\}_\{\rm loc\}$-regularity result. },
author = {Schemm, Sabine},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Higher order functionals; non-standard growth; regularity theory; higher order functionals},
language = {eng},
month = {5},
number = {2},
pages = {472-492},
publisher = {EDP Sciences},
title = {Partial regularity of minimizers of higher order integrals with (p, q)-growth},
url = {http://eudml.org/doc/276327},
volume = {17},
year = {2011},
}

TY - JOUR
AU - Schemm, Sabine
TI - Partial regularity of minimizers of higher order integrals with (p, q)-growth
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2011/5//
PB - EDP Sciences
VL - 17
IS - 2
SP - 472
EP - 492
AB - We consider higher order functionals of the form$F[u]=\int\limits_\Omega f(D^mu)\,{\rm d}x \qquad\text{for }u:\mathbb{R}^n\supset\Omega\to\mathbb{R}^N,$ where the integrand $f:{\textstyle \bigodot^m}(\R^{n},\R^{N})\to\mathbb{R}$, m≥ 1 is strictly quasiconvex and satisfies a non-standard growth condition. More precisely we assume that f fulfills the (p, q)-growth condition \[\gamma|A|^p\le f(A)\le L(1+|A|^q)\qquad \mbox{for all }A \in {\textstyle \bigodot^m}(\R^{n},\R^{N}),\]with γ, L > 0 and $1< p \le q<\min\big\{p+\frac1n,\frac{2n-1}{2n-2}p\big\}$. We study minimizers of the functional $F[\cdot]$ and prove a partial $C^{m,\alpha}_{\rm loc}$-regularity result.
LA - eng
KW - Higher order functionals; non-standard growth; regularity theory; higher order functionals
UR - http://eudml.org/doc/276327
ER -

References

top
  1. E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal.86 (1984) 125–145.  
  2. E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal.99 (1987) 261–281.  
  3. E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: the case 1&lt;p&lt;2. J. Math. Anal. Appl.140 (1989) 115–135.  
  4. E. Acerbi and N. Fusco, Partial regularity under anisotropic (p, q) growth conditions. J. Differ. Equ.107 (1994) 46–67.  
  5. E. Acerbi and G. Mingione, Regularity results for a class of quasiconvex functionals with nonstandard growth. Ann. Scuola Norm. Sup. Pisa Cl. Sci. IV30 (2001) 311–339.  
  6. J.M. Ball and F. Murat, W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal.58 (1984) 225–253.  
  7. M. Bildhauer and M. Fuchs, Partial regularity for variational integrals with (s, µ, q)-growth. Calc. Var. Partial Differ. Equ.13 (2001) 537–560.  
  8. M. Bildhauer and M. Fuchs, C1, α-solutions to non-autonomous anisotropic variational problems. Calc. Var. Partial Differ. Equ.24 (2005) 309–340.  
  9. G. Bouchitté, I. Fonseca and J. Malý, The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinburgh Sect. A128 (1998) 463–479.  
  10. M. Carozza and A. Passarelli di Napoli, Partial regularity for anisotropic functionals of higher order. ESAIM: COCV13 (2007) 692–706.  
  11. M. Carozza, N. Fusco and G. Mingione, Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Ann. Mat. Pura Appl. IV175 (1998) 141–164.  
  12. G. Cupini, M. Guidorzi and E. Mascolo, Regularity of minimizers of vectorial integrals with p-q growth. Nonlinear Anal., Theory Methods Appl.54 (2003) 591–616.  
  13. F. Duzaar and M. Kronz, Regularity of ω-minimizers of quasi-convex variational integrals with polynomial growth. Differ. Geom. Appl.17 (2002) 139–152.  
  14. F. Duzaar and K. Steffen, Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals. J. Reine Angew. Math.546 (2002) 73–138.  
  15. F. Duzaar, A. Gastel and J. Grotowski, Partial regularity for almost minimizers of quasi-convex integrals. SIAM J. Math. Anal.32 (2000) 665–687.  
  16. F. Duzaar, J. Grotowski and M. Kronz, Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth. Ann. Mat. Pura Appl. IV184 (2005) 421–448.  
  17. L. Esposito and G. Mingione, Relaxation results for higher order integrals below the natural growth exponent. Differ. Integral Equ.15 (2002) 671–696.  
  18. L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with (p, q) growth. Forum Math.14 (2002) 245–272.  
  19. L. Esposito, F. Leonetti and G. Mingione, Sharp regularity for functionals with (p, q) growth. J. Differ. Equ.204 (2004) 5–55.  
  20. L.C. Evans, Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal.95 (1986) 227–252.  
  21. I. Fonseca and J. Malý, Relaxation of multiple integrals below the growth exponent. Ann. Inst. Henri Poincaré Anal. Non Linéaire14 (1997) 309–338.  
  22. I. Fonseca and J. Malý, From jacobian to hessian: distributional form and relaxation. Riv. Mat. Univ. Parma4 (2005) 45–74.  
  23. N. Fusco and J. Hutchinson, C1, α partial regularity of functions minimising quasiconvex integrals. Manuscr. Math.54 (1984) 121–143.  
  24. M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Princeton University Press, Princeton (1983).  
  25. M. Giaquinta, Growth conditions and regularity, a counterexample. Manuscr. Math.59 (1987) 245–248.  
  26. M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex integrals. Ann. Inst. Henri Poincaré Anal. Non Linéaire3 (1986) 185–208.  
  27. M. Guidorzi, A remark on partial regularity of minimizers of quasiconvex integrals of higher order. Rend. Ist. Mat. Univ. Trieste32 (2000) 1–24.  
  28. M. Guidorzi and L. Poggiolini, Lower semicontinuity of quasiconvex integrals of higher order. NoDEA6 (1999) 227–246.  
  29. M.C. Hong, Some remarks on the minimizers of variational integrals with non standard growth conditions. Boll. Un. Mat. Ital. A6 (1992) 91–101.  
  30. J. Kristensen, Lower semicontinuity in Sobolev spaces below the growth exponent of the integrand. Proc. Roy. Soc. Edinburgh Sect. A127 (1997) 797–817.  
  31. J. Kristensen and G. Mingione, The singular set of lipschitzian minima of multiple integrals. Arch. Ration. Mech. Anal.184 (2007) 341–369.  
  32. M. Kronz, Partial regularity results for minimizers of quasiconvex functionals of higher order. Ann. Inst. Henri Poincaré Anal. Non Linéaire19 (2002) 81–112.  
  33. P. Marcellini, Approximation of quasiconvex functions and lower semicontinuity of multiple integrals. Manuscr. Math.51 (1985) 1–28.  
  34. P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. Inst. Henri Poincaré Anal. Non Linéaire3 (1986) 391–409.  
  35. P. Marcellini, Un exemple de solution discontinue d'un problème variationnel dans le cas scalaire. Preprint Istituto Matematico U. Dini, Universita' di Firenze (1987/1988), n. 11.  
  36. P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non-standard growth conditions. Arch. Ration. Mech. Anal.105 (1989) 267–284.  
  37. P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions. J. Differ. Equ.90 (1991) 1–30.  
  38. P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. IV23 (1996) 1–25.  
  39. N.G. Meyers, Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Am. Math. Soc.119 (1965) 125–149.  
  40. C.B. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math.2 (1952) 25–53.  
  41. A. Passarelli di Napoli and F. Siepe, A regularity result for a class of anisotropic systems. Rend. Ist. Mat. Univ. Trieste28 (1996) 13–31.  
  42. S. Schemm and T. Schmidt, Partial regularity of strong local minimizers of quasiconvex integrals with (p, q)-growth. Proc. Roy. Soc. Edinburgh Sect. A139 (2009) 595–621.  
  43. T. Schmidt, Regularity of minimizers of W1,p-quasiconvex variational integrals with (p, q)-growth. Calc. Var. Partial Differ. Equ.32 (2008) 1–24.  
  44. T. Schmidt, Regularity of relaxed minimizers of quasiconvex variational integrals with (p, q)-growth. Arch. Ration. Mech. Anal.193 (2009) 311–337.  
  45. F. Siepe and M. Guidorzi, Partial regularity for quasiconvex integrals of any order. Ric. Mat.52 (2003) 31–54.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.