Displaying similar documents to “A Two Well Liouville Theorem”

Equi-integrability results for 3D-2D dimension reduction problems

Marian Bocea, Irene Fonseca (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients α u ε | 1 ε 3 u ε bounded in L p ( Ω ; 9 ) , 1 < p < + . Here it is shown that, up to a subsequence, u ε may be decomposed as w ε + z ε , where z ε carries all the concentration effects, α w ε | 1 ε 3 w ε p is equi-integrable, and w ε captures the oscillatory behavior, z ε 0 in measure. In addition, if { u ε } is a recovering sequence then z ε = z ε ( x α ) nearby Ω .

Impact of the variations of the mixing length in a first order turbulent closure system

Françoise Brossier, Roger Lewandowski (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This paper is devoted to the study of a turbulent circulation model. Equations are derived from the “Navier-Stokes turbulent kinetic energy” system. Some simplifications are performed but attention is focused on non linearities linked to turbulent eddy viscosity  ν t . The mixing length acts as a parameter which controls the turbulent part in ν t . The main theoretical results that we have obtained concern the uniqueness of the solution for bounded eddy viscosities and small values of ...

Relaxation of singular functionals defined on Sobolev spaces

Hafedh Ben Belgacem (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper, we consider a Borel measurable function on the space of m × n matrices f : M m × n ¯ taking the value + , such that its rank-one-convex envelope R f is finite and satisfies for some fixed p > 1 : - c 0 R f ( F ) c ( 1 + F p ) for all F M m × n , where c , c 0 > 0 . Let Ø be a given regular bounded open domain of n . We define on W 1 , p ( Ø ; m ) the functional I ( u ) = Ø f ( u ( x ) ) d x . Then, under some technical restrictions on f , we show that the relaxed functional I ¯ for the weak topology of W 1 , p ( Ø ; m ) has the integral representation: I ¯ ( u ) = Ø Q [ R f ] ( u ( x ) ) d x , where for a given function g , Q g denotes...