A simplicial description of the homotopy category of simplicial groupoids.
Garzon, A.R., Miranda, J.G., Osorio, R. (2000)
Theory and Applications of Categories [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Garzon, A.R., Miranda, J.G., Osorio, R. (2000)
Theory and Applications of Categories [electronic only]
Similarity:
Friedrich W. Bauer (1978)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Luciano Stramaccia (1990)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Timothy Porter (1978)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
J. Remedios-Gómez, S. Rodríguez-Machín (2001)
Extracta Mathematicae
Similarity:
J. García-Calcines, P. García-Díaz, S. Rodríguez-Machín (2006)
Open Mathematics
Similarity:
Taking cylinder objects, as defined in a model category, we consider a cylinder construction in a cofibration category, which provides a reformulation of relative homotopy in the sense of Baues. Although this cylinder is not a functor we show that it verifies a list of properties which are very closed to those of an I-category (or category with a natural cylinder functor). Considering these new properties, we also give an alternative description of Baues’ relative homotopy groupoids. ...
Peter I. Booth (1998)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Ronald Brown, Marek Golasinski (1989)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity: