Erratum to “On free topological algebras”
Hans-E. Porst (1988)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Hans-E. Porst (1988)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Sidney A. Morris (1972)
Matematický časopis
Similarity:
Jeremy Brazas (2014)
Fundamenta Mathematicae
Similarity:
The theory of covering spaces is often used to prove the Nielsen-Schreier theorem, which states that every subgroup of a free group is free. We apply the more general theory of semicovering spaces to obtain analogous subgroup theorems for topological groups: Every open subgroup of a free Graev topological group is a free Graev topological group. An open subgroup of a free Markov topological group is a free Markov topological group if and only if it is disconnected.
Mihail G. Tkachenko (1984)
Czechoslovak Mathematical Journal
Similarity:
Joe Flood
Similarity:
CONTENTSPreface.................................................................................................5Chapter 0. Preliminaries and notation..................................................6PART I. Free topological vector spaces - Introduction..........................9Chapter 1. Universal arrows...............................................................10Chapter 2. Free locally convex topological vector spaces..................12Chapter 3. Free normed spaces........................................................23Chapter...
Vladimir Pestov, Dmitri Shakhmatov (1998)
Colloquium Mathematicae
Similarity:
Answering a 1982 question of Sidney A. Morris, we construct a topological group G and a subspace X such that (i) G is algebraically free over X, (ii) G is relatively free over X, that is, every continuous mapping from X to G extends to a unique continuous endomorphism of G, and (iii) G is not a varietal free topological group on X in any variety of topological groups.
Sidney A. Morris (1976)
Colloquium Mathematicae
Similarity: