The search session has expired. Please query the service again.

Displaying similar documents to “Weak subobjects and weak limits in categories and homotopy categories”

Heaps and unpointed stable homotopy theory

Lukáš Vokřínek (2014)

Archivum Mathematicum

Similarity:

In this paper, we show how certain “stability phenomena” in unpointed model categories provide the sets of homotopy classes with a canonical structure of an abelian heap, i.e. an abelian group without a choice of a zero. In contrast with the classical situation of stable (pointed) model categories, these sets can be empty.

Exploring W.G. Dwyer's tame homotopy theory.

Hans Scheerer, Daniel Tanré (1991)

Publicacions Matemàtiques

Similarity:

Let S be the category of r-reduced simplicial sets, r ≥ 3; let L be the category of (r-1)-reduced differential graded Lie algebras over Z. According to the fundamental work [3] of W.G. Dwyer both categories are endowed with closed model category structures such that the associated tame homotopy category of S is equivalent to the associated homotopy category of L. Here we embark on a study of this equivalence and its implications. In particular, we show how to compute homology, cohomology,...