Deformations of (bi)tensor categories
L. Crane, D. N. Yetter (1998)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
L. Crane, D. N. Yetter (1998)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Sjoed Crans (2000)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Schauenburg, Peter (2001)
The New York Journal of Mathematics [electronic only]
Similarity:
Crans, Sjoerd E. (1999)
Theory and Applications of Categories [electronic only]
Similarity:
Volodymyr Lyubashenko (1997)
Banach Center Publications
Similarity:
Given an abelian 𝑉-linear rigid monoidal category 𝑉, where 𝑉 is a perfect field, we define squared coalgebras as objects of cocompleted 𝑉 ⨂ 𝑉 (Deligne's tensor product of categories) equipped with the appropriate notion of comultiplication. Based on this, (squared) bialgebras and Hopf algebras are defined without use of braiding. If 𝑉 is the category of 𝑉-vector spaces, squared (co)algebras coincide with conventional ones. If 𝑉 is braided, a braided Hopf algebra can be obtained...
Mccrudden, Paddy (2000)
Theory and Applications of Categories [electronic only]
Similarity:
Majid, Shahn
Similarity:
[For the entire collection see Zbl 0742.00067.]The Tanaka-Krein type equivalence between Hopf algebras and functored monoidal categories provides the heuristic strategy of this paper. The author introduces the notion of a double cross product of monoidal categories as a generalization of double cross product of Hopf algebras, and explains some of the motivation from physics (the representation theory for double quantum groups).The Hopf algebra constructions are formulated in terms of...