Foliations, locally Lie groupoids and holonomy
Ronald Brown, Osman Mucuk (1996)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Ronald Brown, Osman Mucuk (1996)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Ivanshin, Pyotr N. (2003)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Similarity:
Ronald Brown, Osman Mucuk (1995)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Jean Pradines (1985)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
R. A. Bowshell (1971)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Marius Crainic, Ivan Struchiner (2013)
Annales scientifiques de l'École Normale Supérieure
Similarity:
We revisit the linearization theorems for proper Lie groupoids around general orbits (statements and proofs). In the fixed point case (known as Zung’s theorem) we give a shorter and more geometric proof, based on a Moser deformation argument. The passage to general orbits (Weinstein) is given a more conceptual interpretation: as a manifestation of Morita invariance. We also clarify the precise statements of the Linearization Theorem (there has been some confusion on this, which has propagated...
Kubarski, Jan
Similarity:
Nina I. Zhukova (2007)
Banach Center Publications
Similarity:
We introduce topological 𝒬-holonomy groupoids for singular foliations (M,ℱ) with an Ehresmann connection 𝒬 using 𝒬-holonomy groups, which have a global character. We show advantage of our groupoids over known ones.