The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The magnetic Schrödinger operator and reverse Hölder class”

Dynamical Resonances and SSF Singularities for a Magnetic Schrödinger Operator

Astaburuaga, María Angélica, Briet, Philippe, Bruneau, Vincent, Fernández, Claudio, Raikov, Georgi (2008)

Serdica Mathematical Journal

Similarity:

We consider the Hamiltonian H of a 3D spinless non-relativistic quantum particle subject to parallel constant magnetic and non-constant electric field. The operator H has infinitely many eigenvalues of infinite multiplicity embedded in its continuous spectrum. We perturb H by appropriate scalar potentials V and investigate the transformation of these embedded eigenvalues into resonances. First, we assume that the electric potentials are dilation-analytic with respect to the variable...

Resonances of two-dimensional Schrödinger operators with strong magnetic fields

Tuan Duong, Anh (2012)

Serdica Mathematical Journal

Similarity:

2010 Mathematics Subject Classification: 81Q20 (35P25, 81V10). The purpose of this paper is to study the Schrödinger operator P(B,w) = (Dx-By^2+Dy^2+w^2x^2+V(x,y),(x,y) О R^2, with the magnetic field B large enough and the constant w № 0 is fixed and proportional to the strength of the electric field. Under certain assumptions on the potential V, we prove the existence of resonances near Landau levels as B®Ґ. Moreover, we show that the width of resonances is of size O(B^-Ґ). ...

Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields

Akira Iwatsuka, Hideo Tamura (1998)

Annales de l'institut Fourier

Similarity:

This article studies the asymptotic behavior of the number N ( λ ) of the negative eigenvalues < - λ as λ + 0 of the two dimensional Pauli operators with electric potential V ( x ) decaying at and with nonconstant magnetic field b ( x ) , which is assumed to be bounded or to decay at . In particular, it is shown that N ( λ ) = ( 1 / 2 π ) V ( x ) > λ b ( x ) d x ( 1 + o ( 1 ) ) , when V ( x ) decays faster than b ( x ) under some additional conditions.