Displaying similar documents to “Remarques sur le calcul des dérivées des fonctions x a et a x

Système de processus auto-stabilisants

Samuel Herrmann

Similarity:

Taking an odd increasing Lipschitz-continuous function with polynomial growth β, an odd Lipschitz-continuous and bounded function ϕ satisfying sgn(x)ϕ(x) ≥ 0 and a parameter a ∈ [1/2,1], we consider the (nonlinear) stochastic differential system ⎧ X t = X + B t + a 0 t ϕ * v s ( X s ) d s - ( 1 - a ) 0 t β * u s ( X s ) d s , (E)⎨ ⎩ Y t = Y + B ̃ t + ( 1 - a ) 0 t ϕ * u s ( Y s ) d s - a 0 t β * v s ( Y s ) d s , ( X t d x ) = u t ( d x ) and ( Y t d x ) = v t ( d x ) , where β * u t ( x ) = β ( x - y ) u t ( d y ) , ( B t ) t 0 and ( B ̃ t ) t 0 are independent Brownian motions. We show that (E) admits a stationary probability measure, and, under some additional conditions, that ( X t , Y t ) converges in distribution to this invariant measure. Moreover we...

Sur une équation de Langmuir généralisée

René Gosse (1949)

Annales de l'institut Fourier

Similarity:

Cet article posthume extrait de notes ou brouillons par E. Cotton concerne, pour les équations de la forme y ' ' + y ' p ( x , y , y ' ) + q ( x ) d a ( y ) d y = f ( y ) , la solution définie par les conditions initiales x = x 0 , y = y 0 , y ' = 0 . Après avoir énoncé des hypothèses concernant les fonctions p , q , a , f , l’auteur montre que toute solution qui passe par un minimum pour x = x 0 , reste supérieure à ce minimum pour x > x 0 et que, dans ces mêmes conditions, | y | et | y ' | restent bornés. Enfin, lorsque p a une borne inférieure positive, y ' tend vers zéro avec...

Applications exponentielles pour les groupes des courants et la décomposition de Birkhoff pour les groupes des nœuds

Jacek Micał

Similarity:

RésuméNous considérons les applications exponentielles pour les groupes C ( M , G L ( N , ) ) où M est une variété lisse compacte. Nous montrons que l’application P : C ( M , g l ( N , ) ) C ( M , G L ( N , ) ) définie par P ( f ) = E x p ( f 1 ) · . . . · E x p ( f k ) pour f i g i , g = g 1 . . . g k est (sous certaines conditions sur la décomposition de g) une bijection locale lisse (d’un voisinage de zéro sur un voisinage de l’unité). Nous montrons aussi que pour M = S¹ l’application Q définie par Q ( f ) ( t ) = j = - E x p ( A j ( f ) e i j t ) est une bijection locale lisse. TABLE DES MATIÈRESIntroduction......................................................................................................................................................................5Chapitre...