Michal’s roses of Jerich
We give a survey of the joint papers of Lawrence Somer and Michal Křížek and discuss the beginning of this collaboration.
Precession is the secular and long-periodic component of the motion of the Earth’s spin axis in the celestial reference frame, approximately exhibiting a motion of about per year around the pole of the ecliptic. The presently adopted precession model, IAU2006, approximates this motion by polynomial expansions of time that are valid, with very high accuracy, in the immediate vicinity (a few centuries) of the reference epoch J2000.0. For more distant epochs, this approximation however quickly deviates...
We consider a contact problem of planar elastic bodies. We adopt Coulomb friction as (an implicitly defined) constitutive law. We will investigate highly simplified lumped parameter models where the contact boundary consists of just one point. In particular, we consider the relevant static and dynamic problems. We are interested in numerical solution of both problems. Even though the static and dynamic problems are qualitatively different, they can be solved by similar piecewise-smooth continuation...
We study a numerical method for the diffusion of an age-structured population in a spatial environment. We extend the method proposed in [2] for linear diffusion problem, to the nonlinear case, where the diffusion coefficients depend on the total population. We integrate separately the age and time variables by finite differences and we discretize the space variable by finite elements. We provide stability and convergence results and we illustrate our approach with some numerical result.
Balancing Domain Decomposition by Constraints (BDDC) belongs to the class of primal substructuring Domain Decomposition (DD) methods. DD methods are iterative methods successfully used in engineering to parallelize solution of large linear systems arising from discretization of second order elliptic problems. Substructuring DD methods represent an important class of DD methods. Their main idea is to divide the underlying domain into nonoverlapping subdomains and solve many relatively small, local...
This study deals with a numerical solution of a 2D flows of a compressible viscous fluids in a convergent channel for low inlet airflow velocity. Three governing systems – Full system, Adiabatic system, Iso-energetic systemu=4.12 ms-14 103
A new method is proposed for the numerical solution of linear mixed Volterra-Fredholm integral equations in one space variable. The proposed numerical algorithm combines the trapezoidal rule, for the integration in time, with piecewise polynomial approximation, for the space discretization. We extend the method to nonlinear mixed Volterra-Fredholm integral equations. Finally, the method is tested on a number of problems and numerical results are given.
We present an algorithm for constructing families of conforming (i.e. face-to-face) nonobtuse tetrahedral finite element meshes for convex 3D cylindrical-type domains. In fact, the algorithm produces only path-tetrahedra.
In this work, we present and discuss continuous and discrete maximum/minimum principles for reaction-diffusion problems with the Neumann boundary condition solved by the finite element and finite difference methods.
In this note, we introduce a new approach to study overlapping domain decomposition methods for optimal control systems governed by partial differential equations. The model considered in our paper is systems governed by wave equations. Our technique could be used for several other equations as well.
In this paper the numerical approximation of aeroelastic response to sudden gust is presented. The fully coupled formulation of two dimensional incompressible viscous fluid flow over a flexibly supported structure is used. The flow is modelled with the system of Navier-Stokes equations written in Arbitrary Lagrangian-Eulerian form and coupled with system of ordinary differential equations describing the airfoil vibrations with two degrees of freedom. The Navier-Stokes equations are spatially discretized...
We show that in dimensions higher than two, the popular "red refinement" technique, commonly used for simplicial mesh refinements and adaptivity in the finite element analysis and practice, never yields subsimplices which are all acute even for an acute father element as opposed to the two-dimensional case. In the three-dimensional case we prove that there exists only one tetrahedron that can be partitioned by red refinement into eight congruent subtetrahedra that are all similar to the original...
Properties satisfied by the moments of the partial non-central -square distribution function, also known as Nuttall Q-functions, and methods for computing these moments are discussed in this paper. The Nuttall Q-function is involved in the study of a variety of problems in different fields, as for example digital communications.
The mathematical analysis of a heat equation and its solutions is a standard part of most textbook of applied mathematics and computational mechanics. However, serious problems from engineering practice do not respect formal simplifications of such analysis, namely at high temperatures, for phase-change materials, etc. This paper, motivated by the material design and testing of a high-temperature thermal accumulator, as a substantial part of the Czech-Swedish project of an original equipment for...
We propose a simple method to obtain sharp upper bounds for the interpolation error constants over the given triangular elements. These constants are important for analysis of interpolation error and especially for the error analysis in the Finite Element Method. In our method, interpolation constants are bounded by the product of the solution of corresponding finite dimensional eigenvalue problems and constant which is slightly larger than one. Guaranteed upper bounds for these constants are obtained...
The global existence of weak solution is proved for the problem of the motion of several rigid bodies in a barotropic compressible fluid, under the influence of gravitational forces.
We study systems of two nonlinear reaction-diffusion partial differential equations undergoing diffusion driven instability. Such systems may have spatially inhomogeneous stationary solutions called Turing patterns. These solutions are typically non-unique and it is not clear how many of them exists. Since there are no analytical results available, we look for the number of distinct stationary solutions numerically. As a typical example, we investigate the reaction-diffusion system designed to model...