Set existence principles of Shoenfield, Ackermann, and Powell
Page 1
W. Reinhardt (1974)
Fundamenta Mathematicae
T. B. Flannagan (1974)
M.W. Bunder (1983)
Archiv für mathematische Logik und Grundlagenforschung
Arnold Oberschelp (1973)
W. Marek (1978)
Fundamenta Mathematicae
Milan Đurić (1972)
Publications de l'Institut Mathématique
M. Artigue, E. Isambert, M. Perrin, A. Zalc (1978)
Fundamenta Mathematicae
Curt Christian (1978)
Monatshefte für Mathematik
Ennio De Giorgi, Marco Forti, Vincenzo M. Tortorelli (1986)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
We formulate, within the frame-theory for the foundations of Mathematics outlined in [2], a list of axioms which state that almost all "interesting" collections and almost all "interesting" operations are elements of the universe. The resulting theory would thus have the important foundational feature of being completely self-contained. Unfortunately, the whole list is inconsistent, and we are led to formulate the following problem, which we call the problem of self-reference: "Find out...
Alan J. Gold (1975)
Annales scientifiques de l'Université de Clermont. Mathématiques
Page 1