Ramsey Theorems and the Property of Baire
We investigate families of partitions of ω which are related to special coideals, so-called happy families, and give a dual form of Ramsey ultrafilters in terms of partitions. The combinatorial properties of these partition-ultrafilters, which we call Ramseyan ultrafilters, are similar to those of Ramsey ultrafilters. For example it will be shown that dual Mathias forcing restricted to a Ramseyan ultrafilter has the same features as Mathias forcing restricted to a Ramsey ultrafilter. Further we...
We deal with a conjectured dichotomy for compact Hausdorff spaces: each such space contains a non-trivial converging ω-sequence or a non-trivial converging ω₁-sequence. We establish that this dichotomy holds in a variety of models; these include the Cohen models, the random real models and any model obtained from a model of CH by an iteration of property K posets. In fact in these models every compact Hausdorff space without non-trivial converging ω₁-sequences is first-countable and, in addition,...
We improve some results of Pavlov and Filatova, concerning a problem of Malykhin, by showing that every regular space X that satisfies Δ(X) > e(X) is ω-resolvable. Here Δ(X), the dispersion character of X, is the smallest size of a non-empty open set in X, and e(X), the extent of X, is the supremum of the sizes of all closed-and-discrete subsets of X. In particular, regular Lindelöf spaces of uncountable dispersion character are ω-resolvable. We also prove that any regular...
Every crowded space is -resolvable in the c.c.c. generic extension of the ground model. We investigate what we can say about -resolvability in c.c.c. generic extensions for . A topological space is monotonically -resolvable if there is a function such that for each . We show that given a space the following statements are equivalent: (1) is -resolvable in some c.c.c. generic extension; (2) is monotonically -resolvable; (3) is -resolvable in the Cohen-generic extension ....
The Rothberger number (ℐ) of a definable ideal ℐ on ω is the least cardinal κ such that there exists a Rothberger gap of type (ω,κ) in the quotient algebra (ω)/ℐ. We investigate (ℐ) for a class of ideals, the fragmented ideals, and prove that for some of these ideals, like the linear growth ideal, the Rothberger number is ℵ₁, while for others, like the polynomial growth ideal, it is above the additivity of measure. We also show that it is consistent that there are infinitely many (even continuum...
We introduce a generalization of a Dowker space constructed from a Suslin tree by Mary Ellen Rudin, and the rectangle refining property for forcing notions, which modifies the one for partitions due to Paul B. Larson and Stevo Todorčević and is stronger than the countable chain condition. It is proved that Martin's Axiom for forcing notions with the rectangle refining property implies that every generalized Rudin space constructed from Aronszajn trees is non-Dowker, and that the same can be forced...