Weak Rudin-Keisler reductions on projective ideals
We consider a slightly modified form of the standard Rudin-Keisler order on ideals and demonstrate the existence of complete (with respect to this order) ideals in various projective classes. Using our methods, we obtain a simple proof of Hjorth’s theorem on the existence of a complete Π¹₁ equivalence relation. This proof enables us (under PD) to generalize Hjorth’s result to the classes of equivalence relations.