Short Note: Counting Conjectures.
In [12] Trillas proved that (P(X),∩,U,-n) is a quasi-Boolean algebra if and only if its negation has an additive generator. In this paper such result is generalized to PJ(X) and the symmetry of J is analized.From the results of Esteva ([11]) weak negations on [0,1] are studied; it is proved that such functions are monotonic, non-increasing, left-continuous and symmetrical with respect to y=x. Their classification relative to C([0,1]) is also given and a canonical element of each class is found....
In this paper, we prove that Eulerian lattices satisfying some weaker conditions for lattices or some weaker conditions for 0-distributive lattices become Boolean.
In this paper we shall give a survey of the most important characterizations of the notion of distributivity in semilattices with greatest element and we will present some new ones through annihilators and relative maximal filters. We shall also simplify the topological representation for distributive semilattices given in Celani S.A., Topological representation of distributive semilattices, Sci. Math. Japonicae online 8 (2003), 41–51, and show that the meet-relations are closed under composition....