The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Indiscernibles and dimensional compactness

C. Ward Henson, Pavol Zlatoš (1996)

Commentationes Mathematicae Universitatis Carolinae

This is a contribution to the theory of topological vector spaces within the framework of the alternative set theory. Using indiscernibles we will show that every infinite set u S G in a biequivalence vector space W , M , G , such that x - y M for distinct x , y u , contains an infinite independent subset. Consequently, a class X G is dimensionally compact iff the π -equivalence M is compact on X . This solves a problem from the paper [NPZ 1992] by J. Náter, P. Pulmann and the second author.

Currently displaying 1 – 2 of 2

Page 1