Indiscernibles and dimensional compactness
This is a contribution to the theory of topological vector spaces within the framework of the alternative set theory. Using indiscernibles we will show that every infinite set in a biequivalence vector space , such that for distinct , contains an infinite independent subset. Consequently, a class is dimensionally compact iff the -equivalence is compact on . This solves a problem from the paper [NPZ 1992] by J. Náter, P. Pulmann and the second author.