Displaying 101 – 120 of 216

Showing per page

Les derniers travaux de Jean Martinet

Jean-Pierre Ramis (1992)

Annales de l'institut Fourier

On montre comment la théorie des classes de Gevrey et de la sommabilité sont des généralisations naturelles de la théorie de Cauchy. On utilise le vocabulaire de l’Analyse Non Standard et on introduit la notion d’ ϵ -fonction (fonction analytique définie “à ϵ près”, pour ϵ > 0 infiniment petit fixé, et ne prenant que des valeurs infiniment petite devant 1 / ϵ . On étend la théorie de Cauchy aux = F D e -fonctions  : c’est la théorie de Cauchy sauvage. On interprète le phénomène de retard à la bifurcation à l’aide...

Limits of log canonical thresholds

Tommaso de Fernex, Mircea Mustață (2009)

Annales scientifiques de l'École Normale Supérieure

Let 𝒯 n denote the set of log canonical thresholds of pairs ( X , Y ) , with X a nonsingular variety of dimension n , and Y a nonempty closed subscheme of X . Using non-standard methods, we show that every limit of a decreasing sequence in 𝒯 n lies in 𝒯 n - 1 , proving in this setting a conjecture of Kollár. We also show that 𝒯 n is closed in 𝐑 ; in particular, every limit of log canonical thresholds on smooth varieties of fixed dimension is a rational number. As a consequence of this property, we see that in order to check...

Multiplication of nonadditive cuts in AST

Karel Čuda (1991)

Commentationes Mathematicae Universitatis Carolinae

Three complete characteristics of couples of nonadditive cuts such that J × K ̲ J t i m e s K ¯ are given. The equality J × K ¯ = J ! K is proved for all couples of nonadditive cuts. Some examples of nonadditive cuts are described.

Currently displaying 101 – 120 of 216