La mathématique non standard vieille de soixante ans ?
On montre comment la théorie des classes de Gevrey et de la sommabilité sont des généralisations naturelles de la théorie de Cauchy. On utilise le vocabulaire de l’Analyse Non Standard et on introduit la notion d’-fonction (fonction analytique définie “à près”, pour infiniment petit fixé, et ne prenant que des valeurs infiniment petite devant . On étend la théorie de Cauchy aux -fonctions : c’est la théorie de Cauchy sauvage. On interprète le phénomène de retard à la bifurcation à l’aide...
Let denote the set of log canonical thresholds of pairs , with a nonsingular variety of dimension , and a nonempty closed subscheme of . Using non-standard methods, we show that every limit of a decreasing sequence in lies in , proving in this setting a conjecture of Kollár. We also show that is closed in ; in particular, every limit of log canonical thresholds on smooth varieties of fixed dimension is a rational number. As a consequence of this property, we see that in order to check...
Continuing the earlier research [Fund. Math. 129 (1988) and 149 (1996)] we give some information about extending automorphisms of models of PA to cofinal extensions.
Three complete characteristics of couples of nonadditive cuts such that are given. The equality is proved for all couples of nonadditive cuts. Some examples of nonadditive cuts are described.