Page 1

Displaying 1 – 8 of 8

Showing per page

On k-intersection edge colourings

Rahul Muthu, N. Narayanan, C.R. Subramanian (2009)

Discussiones Mathematicae Graph Theory

We propose the following problem. For some k ≥ 1, a graph G is to be properly edge coloured such that any two adjacent vertices share at most k colours. We call this the k-intersection edge colouring. The minimum number of colours sufficient to guarantee such a colouring is the k-intersection chromatic index and is denoted χ’ₖ(G). Let fₖ be defined by f ( Δ ) = m a x G : Δ ( G ) = Δ χ ' ( G ) . We show that fₖ(Δ) = Θ(Δ²/k). We also discuss some open problems.

On the dimension of additive sets

P. Candela, H. A. Helfgott (2015)

Acta Arithmetica

We study the relations between several notions of dimension for an additive set, some of which are well-known and some of which are more recent, appearing for instance in work of Schoen and Shkredov. We obtain bounds for the ratios between these dimensions by improving an inequality of Lev and Yuster, and we show that these bounds are asymptotically sharp, using in particular the existence of large dissociated subsets of {0,1}ⁿ ⊂ ℤⁿ.

On universal graphs for hom-properties

Peter Mihók, Jozef Miškuf, Gabriel Semanišin (2009)

Discussiones Mathematicae Graph Theory

A graph property is any isomorphism closed class of simple graphs. For a simple finite graph H, let → H denote the class of all simple countable graphs that admit homomorphisms to H, such classes of graphs are called hom-properties. Given a graph property 𝓟, a graph G ∈ 𝓟 is universal in 𝓟 if each member of 𝓟 is isomorphic to an induced subgraph of G. In particular, we consider universal graphs in → H and we give a new proof of the existence of a universal graph in → H, for any finite graph...

Currently displaying 1 – 8 of 8

Page 1