Displaying 21 – 40 of 47

Showing per page

Ideals in distributive posets

Cyndyma Batueva, Marina Semenova (2011)

Open Mathematics

We prove that any ideal in a distributive (relative to a certain completion) poset is an intersection of prime ideals. Besides that, we give a characterization of n-normal meet semilattices with zero, thus generalizing a known result for lattices with zero.

Monotone and cone preserving mappings on posets

Ivan Chajda, Helmut Länger (2023)

Mathematica Bohemica

We define several sorts of mappings on a poset like monotone, strictly monotone, upper cone preserving and variants of these. Our aim is to study in which posets some of these mappings coincide. We define special mappings determined by two elements and investigate when these are strictly monotone or upper cone preserving. If the considered poset is a semilattice then its monotone mappings coincide with semilattice homomorphisms if and only if the poset is a chain. Similarly, we study posets which...

On n-normal posets

Radomír Halaš, Vinayak Joshi, Vilas Kharat (2010)

Open Mathematics

A poset Q is called n-normal, if its every prime ideal contains at most n minimal prime ideals. In this paper, using the prime ideal theorem for finite ideal distributive posets, some properties and characterizations of n-normal posets are obtained.

Primeness and semiprimeness in posets

Vilas S. Kharat, Khalid A. Mokbel (2009)

Mathematica Bohemica

The concept of a semiprime ideal in a poset is introduced. Characterizations of semiprime ideals in a poset P as well as characterizations of a semiprime ideal to be prime in P are obtained in terms of meet-irreducible elements of the lattice of ideals of P and in terms of maximality of ideals. Also, prime ideals in a poset are characterized.

Pseudocomplemented and Stone Posets

Ivan Chajda (2012)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

We show that every pseudocomplemented poset can be equivalently expressed as a certain algebra where the operation of pseudocomplementation can be characterized by means of remaining two operations which are binary and nullary. Similar characterization is presented for Stone posets.

Relatively pseudocomplemented posets

Ivan Chajda, Helmut Länger (2018)

Mathematica Bohemica

We extend the notion of a relatively pseudocomplemented meet-semilattice to arbitrary posets. We show some properties of the binary operation of relative pseudocomplementation and provide some corresponding characterizations. We show that relatively pseudocomplemented posets satisfying a certain simple identity in two variables are join-semilattices. Finally, we show that every relatively pseudocomplemented poset is distributive and that the converse holds for posets satisfying the ascending chain...

Residuation in twist products and pseudo-Kleene posets

Ivan Chajda, Helmut Länger (2022)

Mathematica Bohemica

M. Busaniche, R. Cignoli (2014), C. Tsinakis and A. M. Wille (2006) showed that every residuated lattice induces a residuation on its full twist product. For their construction they used also lattice operations. We generalize this problem to left-residuated groupoids which need not be lattice-ordered. Hence, we cannot use the same construction for the full twist product. We present another appropriate construction which, however, does not preserve commutativity and associativity of multiplication....

Currently displaying 21 – 40 of 47